scispace - formally typeset
Search or ask a question

Showing papers by "Madhav V. Marathe published in 2017"


Journal ArticleDOI
TL;DR: This paper presents an evaluation framework which allows for combining different features, error measures, and ranking schema to evaluate forecasts, and demonstrates the utility of the framework by evaluating six forecasting methods for predicting influenza in the United States.
Abstract: Over the past few decades, numerous forecasting methods have been proposed in the field of epidemic forecasting. Such methods can be classified into different categories such as deterministic vs. probabilistic, comparative methods vs. generative methods, and so on. In some of the more popular comparative methods, researchers compare observed epidemiological data from the early stages of an outbreak with the output of proposed models to forecast the future trend and prevalence of the pandemic. A significant problem in this area is the lack of standard well-defined evaluation measures to select the best algorithm among different ones, as well as for selecting the best possible configuration for a particular algorithm. In this paper we present an evaluation framework which allows for combining different features, error measures, and ranking schema to evaluate forecasts. We describe the various epidemic features (Epi-features) included to characterize the output of forecasting methods and provide suitable error measures that could be used to evaluate the accuracy of the methods with respect to these Epi-features. We focus on long-term predictions rather than short-term forecasting and demonstrate the utility of the framework by evaluating six forecasting methods for predicting influenza in the United States. Our results demonstrate that different error measures lead to different rankings even for a single Epi-feature. Further, our experimental analyses show that no single method dominates the rest in predicting all Epi-features when evaluated across error measures. As an alternative, we provide various Consensus Ranking schema that summarize individual rankings, thus accounting for different error measures. Since each Epi-feature presents a different aspect of the epidemic, multiple methods need to be combined to provide a comprehensive forecast. Thus we call for a more nuanced approach while evaluating epidemic forecasts and we believe that a comprehensive evaluation framework, as presented in this paper, will add value to the computational epidemiology community.

49 citations


Journal ArticleDOI
TL;DR: The Influenzanet platform shows that digital participatory surveillance data combined with a realistic data-driven epidemiological model can provide both short-term and long-term forecasts of epidemic intensities, and the ground truth data lie within the 95 percent confidence intervals for most weeks.
Abstract: Background: Influenza outbreaks affect millions of people every year and its surveillance is usually carried out in developed countries through a network of sentinel doctors who report the weekly number of Influenza-like Illness cases observed among the visited patients. Monitoring and forecasting the evolution of these outbreaks supports decision makers in designing effective interventions and allocating resources to mitigate their impact. Objective: Describe the existing participatory surveillance approaches that have been used for modeling and forecasting of the seasonal influenza epidemic, and how they can help strengthen real-time epidemic science and provide a more rigorous understanding of epidemic conditions. Methods: We describe three different participatory surveillance systems, WISDM (Widely Internet Sourced Distributed Monitoring), Influenzanet and Flu Near You (FNY), and show how modeling and simulation can be or has been combined with participatory disease surveillance to: i) measure the non-response bias in a participatory surveillance sample using WISDM; and ii) nowcast and forecast influenza activity in different parts of the world (using Influenzanet and Flu Near You). Results: WISDM-based results measure the participatory and sample bias for three epidemic metrics i.e. attack rate, peak infection rate, and time-to-peak, and find the participatory bias to be the largest component of the total bias. The Influenzanet platform shows that digital participatory surveillance data combined with a realistic data-driven epidemiological model can provide both short-term and long-term forecasts of epidemic intensities, and the ground truth data lie within the 95 percent confidence intervals for most weeks. The statistical accuracy of the ensemble forecasts increase as the season progresses. The Flu Near You platform shows that participatory surveillance data provide accurate short-term flu activity forecasts and influenza activity predictions. The correlation of the HealthMap Flu Trends estimates with the observed CDC ILI rates is 0.99 for 2013-2015. Additional data sources lead to an error reduction of about 40% when compared to the estimates of the model that only incorporates CDC historical information. Conclusions: While the advantages of participatory surveillance, compared to traditional surveillance, include its timeliness, lower costs, and broader reach, it is limited by a lack of control over the characteristics of the population sample. Modeling and simulation can help overcome this limitation as well as provide real-time and long-term forecasting of influenza activity in data-poor parts of the world. [JMIR Public Health Surveill 2017;3(4):e83]

41 citations


Posted Content
TL;DR: In this paper, the authors present an evaluation framework which allows for combining different features, error measures, and ranking schema to evaluate forecasts, and demonstrate the utility of the framework by evaluating six forecasting methods for predicting influenza in the United States.
Abstract: Background: Over the past few decades, numerous forecasting methods have been proposed in the field of epidemic forecasting. Such methods can be classified into different categories such as deterministic vs. probabilistic, comparative methods vs. generative methods, and so on. In some of the more popular comparative methods, researchers compare observed epidemiological data from early stages of an outbreak with the output of proposed models to forecast the future trend and prevalence of the pandemic. A significant problem in this area is the lack of standard well-defined evaluation measures to select the best algorithm among different ones, as well as for selecting the best possible configuration for a particular algorithm. Results: In this paper, we present an evaluation framework which allows for combining different features, error measures, and ranking schema to evaluate forecasts. We describe the various epidemic features (Epi-features) included to characterize the output of forecasting methods and provide suitable error measures that could be used to evaluate the accuracy of the methods with respect to these Epi-features. We focus on long-term predictions rather than short-term forecasting and demonstrate the utility of the framework by evaluating six forecasting methods for predicting influenza in the United States. Our results demonstrate that different error measures lead to different rankings even for a single Epi-feature. Further, our experimental analyses show that no single method dominates the rest in predicting all Epi-features, when evaluated across error measures. As an alternative, we provide various consensus ranking schema that summarizes individual rankings, thus accounting for different error measures. We believe that a comprehensive evaluation framework, as presented in this paper, will add value to the computational epidemiology community.

31 citations


Proceedings ArticleDOI
01 Dec 2017
TL;DR: In this article, an OpenMP-based shared-memory parallel algorithm for generating a random graph with a prescribed degree sequence was presented, which achieves a speedup of 20.4 with 32 cores.
Abstract: Random graphs (or networks) have gained a significant increase of interest due to its popularity in modeling and simulating many complex real-world systems. Degree sequence is one of the most important aspects of these systems. Random graphs with a given degree sequence can capture many characteristics like dependent edges and non-binomial degree distribution that are absent in many classical random graph models such as the Erdőos-Renyi graph model. In addition, they have important applications in uniform sampling of random graphs, counting the number of graphs having the same degree sequence, as well as in string theory, random matrix theory, and matching theory. In this paper, we present an OpenMP-based shared-memory parallel algorithm for generating a random graph with a prescribed degree sequence, which achieves a speedup of 20.4 with 32 cores. We also present a comparative study of several structural properties of the random graphs generated by our algorithm with that of the real-world graphs and random graphs generated by other popular methods. One of the steps in our parallel algorithm requires checking the Erdőos-Gallai characterization, i.e., whether there exists a graph obeying the given degree sequence, in parallel. This paper presents a non-trivial parallel algorithm for checking the Erdőos-Gallai characterization, which achieves a speedup of 23 with 32 cores.

12 citations


Journal ArticleDOI
TL;DR: In this article, an approach that uses this emulation approach within a Bayesian model calibration framework to calibrate an agent-based model of an epidemic is presented. But, the approach is extended to handle the multivariate nature of the model output, which gives a time series of the count of infected individuals.
Abstract: In a number of cases, the Quantile Gaussian Process (QGP) has proven effective in emulating stochastic, univariate computer model output (Plumlee and Tuo, 2014). In this paper, we develop an approach that uses this emulation approach within a Bayesian model calibration framework to calibrate an agent-based model of an epidemic. In addition, this approach is extended to handle the multivariate nature of the model output, which gives a time series of the count of infected individuals. The basic modeling approach is adapted from Higdon et al. (2008), using a basis representation to capture the multivariate model output. The approach is motivated with an example taken from the 2015 Ebola Challenge workshop which simulated an ebola epidemic to evaluate methodology.

11 citations


01 Jan 2017
TL;DR: In this paper, a pipelined adaptive-group communication pattern is proposed to improve inter-node scalability and a fine-grained pipeline design is designed to reduce the memory space of intermediate results.
Abstract: Subgraph counting aims to count the number of occurrences of a subgraph T (aka as a template) in a given graph G. The basic problem has found applications in diverse domains. The problem is known to be computationally challenging - the complexity grows both as a function of T and G. Recent applications have motivated solving such problems on massive networks with billions of vertices. In this chapter, we study the subgraph counting problem from a parallel computing perspective. We discuss efficient parallel algorithms for approximately resolving subgraph counting problems by using the color-coding technique. We then present several system-level strategies to substantially improve the overall performance of the algorithm in massive subgraph counting problems. We propose: 1) a novel pipelined Adaptive-Group communication pattern to improve inter-node scalability, 2) a fine-grained pipeline design to effectively reduce the memory space of intermediate results, 3) partitioning neighbor lists of subgraph vertices to achieve better thread concurrency and workload balance. Experimentation on an Intel Xeon E5 cluster shows that our implementation achieves 5x speedup of performance compared to the state-of-the-art work while reduces the peak memory utilization by a factor of 2 on large templates of 12 to 15 vertices and input graphs of 2 to 5 billions of edges.

5 citations


Posted Content
TL;DR: This paper presents an OpenMP-based shared-memory parallel algorithm for generating a random graph with a prescribed degree sequence, which achieves a speedup of 20.4 with 32 cores and presents a comparative study of several structural properties of the random graphs generated by the algorithm with that of the real-world graphs and random graph generated by other popular methods.
Abstract: Random graphs (or networks) have gained a significant increase of interest due to its popularity in modeling and simulating many complex real-world systems. Degree sequence is one of the most important aspects of these systems. Random graphs with a given degree sequence can capture many characteristics like dependent edges and non-binomial degree distribution that are absent in many classical random graph models such as the Erdős-Renyi graph model. In addition, they have important applications in the uniform sampling of random graphs, counting the number of graphs having the same degree sequence, as well as in string theory, random matrix theory, and matching theory. In this paper, we present an OpenMP-based shared-memory parallel algorithm for generating a random graph with a prescribed degree sequence, which achieves a speedup of 20.5 with 32 cores. One of the steps in our parallel algorithm requires checking the Erdős-Gallai characterization, i.e., whether there exists a graph obeying the given degree sequence, in parallel. This paper presents the first non-trivial parallel algorithm for checking the Erdős-Gallai characterization, which achieves a speedup of 23 using 32 cores.

2 citations