scispace - formally typeset
Search or ask a question

Showing papers by "Manit Nithitanakul published in 2020"


Journal ArticleDOI
08 Jun 2020
Abstract: Mesoporous silicas with hexagonal structure (MCM-41 and SBA-15) and cubical interconnected pore structure (KIT-6) were synthesized and modified with aminopropyltriethoxysilane (APTES) for using as adsorbents in carbon-dioxide (CO2)-adsorption application. The CO2-adsorption experiment was carried out at room temperature and atmospheric pressure using 15% CO2 with a flow rate of 20 mL/min and the desorption experiment was carried out at 100°C under N2 balance with a flow rate of 20 mL/min. The adsorption capacity and adsorption rate of all modified mesoporous silicas were enhanced due to the presence of primary amine in the structure, which was able to form a fast chemical reaction with CO2. All adsorbents showed good adsorption performance stability after using over five adsorption/desorption cycles. Due to the effect of the adsorbents’ porous structure on the adsorption/desorption process, an adsorbent with sufficient pore-size diameter and pore volume together with interconnected pore, KIT-6, represents a promising adsorbent that gave the optimum adsorption/desorption performance among others. It showed reasonable adsorption capacity with a high rate of adsorption. In addition, it could also be regenerated with 99.72% efficiency using 12.07 kJ/mmolCO2 of heat duty for regeneration.

12 citations


Journal ArticleDOI
24 Aug 2020
TL;DR: The ability for the cell attachment and the adhesion/proliferation of the cells, suggested that poly(TT/DPEHA) HIPEs with HA were suitable for biomaterial application.
Abstract: Synthetic biomaterials that can be structured into porous scaffolds for support cell growth have played a role in developing the field of tissue engineering. This research focused on combination of biodegradable emulsion template along with the assisting of low-cost polymerization reaction. The appendage of ester-based surfactant, Hypermer B246, played a vital role which gave an outstanding dispersion in HIPEs system and degradability. PolyHIPEs were prepared by using domestic ultraviolet light source for producing a multiscale porosity material. The morphology showed a promising result of poly(pentaerythritol tetrakis (3-mercaptopropionate)/dipentaerythritol penta-/hexa-acrylate)HIPEs with varied Hypermer B246 surfactant concentration resulting in the pores size increased in between 51.2 ± 9.8 µm to 131.4 ± 26.32 µm. Cellular moieties of poly(TT/DPEHA) HIPEs were confirmed by using SEM while inclusion of hydroxyapatite were confirmed by SEM, FTIR and EDX-SEM and quantified by thermogravimetric analysis. The maximum stress and compressive modulus of the obtained materials were significantly enhanced with HA up to five percent by weight. Poly(TT/DPEHA)HIPEs with HA showed the ability for the cell attachment and the adhesion/proliferation of the cells, suggested that poly(TT/DPEHA) HIPEs with HA were suitable for biomaterial application.

3 citations