scispace - formally typeset
Search or ask a question

Showing papers by "Manuel P. Malumbres published in 2014"


Journal ArticleDOI
TL;DR: If the analyzed metrics can replace the PSNR while comparing, designing, and evaluating video codec proposals, and, in particular, under video delivery scenarios characterized by bursty and frequent packet losses, such as wireless multihop environments is determined.
Abstract: When comparing the performance of video coding approaches, evaluating different commercial video encoders, or measuring the perceived video quality in a wireless environment, Rate/distortion analysis is commonly used, where distortion is usually measured in terms of PSNR values. However, PSNR does not always capture the distortion perceived by a human being. As a consequence, significant efforts have focused on defining an objective video quality metric that is able to assess quality in the same way as a human does. We perform a study of some available objective quality assessment metrics in order to evaluate their behavior in two different scenarios. First, we deal with video sequences compressed by different encoders at different bitrates in order to properly measure the video quality degradation associated with the encoding system. In addition, we evaluate the behavior of the quality metrics when measuring video distortions produced by packet losses in mobile ad hoc network scenarios with variable degrees of network congestion and node mobility. Our purpose is to determine if the analyzed metrics can replace the PSNR while comparing, designing, and evaluating video codec proposals, and, in particular, under video delivery scenarios characterized by bursty and frequent packet losses, such as wireless multihop environments.

6 citations


Journal ArticleDOI
TL;DR: This paper focuses on HEVC video coding standard streaming in vehicular networks and how it deals with packet losses with the aid of RaptorQ, a Forward Error Correction scheme.
Abstract: With future vehicles equipped with processing capability, storage, and communications, vehicular networks will become a reality. A vast number of applications will arise that will make use of this connectivity. Some of them will be based on video streaming. In this paper we focus on HEVC video coding standard streaming in vehicular networks and how it deals with packet losses with the aid of RaptorQ, a Forward Error Correction scheme. As vehicular networks are packet loss prone networks, protection mechanisms are necessary if we want to guarantee a minimum level of quality of experience to the final user. We have run simulations to evaluate which configurations fit better in this type of scenarios.

4 citations