scispace - formally typeset
Search or ask a question

Showing papers by "Manuela M. Pereira published in 2001"


Journal ArticleDOI
TL;DR: It is proposed that the Archaea domain acquired terminal oxidases by gene transfer from the Gram-positive bacteria, implying that these enzymes were not present in the last common ancestor before the divergence between Archaea and Bacteria.

430 citations


Journal ArticleDOI
TL;DR: It is shown that an oxidase, which uses an iron-sulfur protein as an electron donor, is structurally related to the caa(3) class of heme-copper cytochrome c oxidases.
Abstract: The respiratory chain of the thermohalophilic bacterium Rhodothermus marinus contains an oxygen reductase, which uses HiPIP (high potential iron-sulfur protein) as an electron donor. The structural genes encoding the four subunits of this HiPIP:oxygen oxidoreductase were cloned and sequenced. The genes for subunits II, I, III, and IV (named rcoxA to rcoxD) are found in this order and seemed to be organized in an operon of at least five genes with a terminator structure a few nucleotides downstream of rcoxD. Examination of the amino acid sequence of the Rcox subunits shows that the subunits of the R. marinus enzyme have homology to the corresponding subunits of oxidases belonging to the superfamily of heme-copper oxidases. RcoxB has the conserved histidines involved in binding the binuclear center and the low-spin heme. All of the residues proposed to be involved in proton transfer channels are conserved, with the exception of the key glutamate residue of the D-channel (E278, Paracoccus denitrificans numbering). Analysis of the homology-derived structural model of subunit I shows that the phenol group of a tyrosine (Y) residue and the hydroxyl group of the following serine (S) may functionally substitute the glutamate carboxyl in proton transfer. RcoxA has an additional sequence for heme C binding, after the CuA domain, that is characteristic of caa3 oxidases belonging to the superfamily. Homology modeling of the structure of this cytochrome domain of subunit II shows no marked electrostatic character, especially around the heme edge region, suggesting that the interaction with a redox partner is not of an electrostatic nature. This observation is analyzed in relation to the electron donor for this caa3 oxidase, the HiPIP. In conclusion, it is shown that an oxidase, which uses an iron-sulfur protein as an electron donor, is structurally related to the caa3 class of heme-copper cytochrome c oxidases. The data are discussed in the framework of the evolution of oxidases within the superfamily of heme-copper oxidases.

39 citations


Journal ArticleDOI
TL;DR: The succinate dehydrogenase from the thermohalophilic bacterium Rhodothermus marinus is a member of the succinate:menaquinone oxidoreductases family, and its behavior is consistent with the proposal that in these enzymes menaquinone reduction occurs close to heme bL, near to the periplasmic side of the membrane, and involving dissipation of the proton transmembrane gradient.
Abstract: The succinate dehydrogenase from the thermohalophilic bacterium Rhodothermus marinus is a member of the succinate:menaquinone oxidoreductases family. It is constituted by three subunits with apparent molecular masses of 70, 32, and 18 kDa. The optimum temperature for succinate dehydrogenase activity is 80 degrees C, higher than the optimum growth temperature of R. marinus, 65 degrees C. The enzyme shows a high affinity for both succinate (Km = 0.165 mM) and fumarate (Km = 0.10 mM). It contains the canonical iron-sulfur centers S1, S2, and S3, as well as two B-type hemes. In contrast to other succinate dehydrogenases, the S3 center has an unusually high reduction potential of +130 mV and is present in two different conformations, one of which presents an unusual EPR signal with g values at 2.035, 2.009, and 2.001. The apparent midpoint reduction potentials of the hemes, +75 and -65 mV at pH 7.5, are also higher than those reported for other enzymes. The heme with the lower potential (heme bL) presents a considerable dependence of the reduction potential with pH (redox-Bohr effect), having a pKa(OX) = 6.5 and a pKa(red) = 8.7. This behavior is consistent with the proposal that in these enzymes menaquinone reduction occurs close to heme bL, near to the periplasmic side of the membrane, and involving dissipation of the proton transmembrane gradient.

29 citations


Journal ArticleDOI
TL;DR: The ligand-binding dynamics and the reaction with O(2) of the fully (five-electron) reduced cytochrome caa(3) from the thermohalophilic bacterium Rhodothermus (R.) marinus were investigated, finding the slower transition times as compared to those observed with the bovine enzyme most likely reflect the replacement of Glu(I-286) with a tyrosine in the R. marinus enzyme.
Abstract: The ligand-binding dynamics and the reaction with O2 of the fully (five-electron) reduced cytochrome caa3 from the thermohalophilic bacterium Rhodothermus (R.) marinus were investigated. The enzyme is a proton pump which has all the residues of the proton-transfer pathways found in the mitochondrial-like enzymes conserved, except for one of the key elements of the D-pathway, the helix-VI glutamate [Glu(I-286), R. sphaeroides numbering]. In contrast to what has been suggested previously as general characteristics of thermophilic enzymes, during formation of the R. marinus caa3−CO complex, CO binds weakly to CuB, and is rapidly (kBa = 450 s-1) trapped by irreversible (KBa = 4.5 × 103) binding to heme a3. Upon reaction of the fully reduced enzyme with O2, four kinetic phases were resolved during the first 10 ms after initiation of the reaction. On the basis of a comparison to reactions observed with the bovine enzyme, these phases were attributed to the following transitions between intermediates (pH 7.8, 1 ...

11 citations