scispace - formally typeset
Search or ask a question

Showing papers by "Marco Rabuffetti published in 2008"


Journal ArticleDOI
TL;DR: Higher correlations were observed between the protocols with similar biomechanical models, whereas little influence seems to be ascribed to the marker-set, and all five protocols showed good intra-protocol repeatability.

293 citations


Journal ArticleDOI
01 Dec 2008-Brain
TL;DR: The evidence that locomotor automatisms of the upper and lower limbs display uncorrelated impairment upon dysfunction of the basal ganglia, as well as different susceptibility to electrophysiological and pharmacological interventions, points to the presence of heterogeneously distributed, possibly partially independent, supraspinal control channels.
Abstract: Clinical evidence of impaired arm swing while walking in patients with Parkinson's disease suggests that basal ganglia and related systems play an important part in the control of upper limb locomotor automatism. To gain more information on this supraspinal influence, we measured arm and thigh kinematics during walking in 10 Parkinson's disease patients, under four conditions: (i) baseline (no treatment), (ii) therapeutic stimulation of the subthalamic nucleus (STN), (iii)L-DOPA medication and (iv) combined STN stimulation and L-DOPA. Ten age-matched controls provided reference data. Under baseline conditions the range of patients' arm motion was severely restricted, with no correlation with the excursion of the thigh. In addition, the arm swing was abnormally coupled in time with oscillation of the ipsilateral thigh. STN stimulation significantly increased the gait speed and improved the spatio-temporal parameters of arm and thigh motion. The kinematic changes as a function of gait speed changes, however, were significantly smaller for the upper than the lower limb, in contrast to healthy controls. Arm motion was also less responsive after L-DOPA. Simultaneous deep brain stimulation and L-DOPA had additive effects on thigh motion, but not on arm motion and arm-thigh coupling. The evidence that locomotor automatisms of the upper and lower limbs display uncorrelated impairment upon dysfunction of the basal ganglia, as well as different susceptibility to electrophysiological and pharmacological interventions, points to the presence of heterogeneously distributed, possibly partially independent, supraspinal control channels, whereby STN and dopaminergic systems have relatively weaker influence on the executive structures involved in the arm swing and preferential action on those for lower limb movements. These findings might be considered in the light of phylogenetic changes in supraspinal control of limb motion related to primate bipedalism.

38 citations


Journal ArticleDOI
TL;DR: A possible descriptive model explaining the different responsiveness to visual stimulation strategies with the progression of pathology and the consequent changes on the activation levels of the involved motor and associative areas is proposed.
Abstract: Several studies have demonstrated the capability of PD subjects to improve gait if appropriate visual cues are provided. Possible explanations referred to attentional factors and to the presence of optic flow on peripheral vision. The aim of the present study was to evaluate separately these two mechanisms in a group of fifteen subjects with Parkinson's Disease at different stages and in a group of ten age-matched controls. A microprocessor-controlled portable device implementing two different optical stimulation modalities has been used: bilateral continuous optic flow and unilateral reciprocal optical stimulus that is synchronized to the swing phase of gait. The latter allowed for the implementation of an attentional strategy. Results showed that mild PD subjects (H&Y 2) tend to be more responsive to the attentional strategy, through an increase of stride length (+ 19.8%) and a compensatory decrease of cadence (- 16.2%). Although stated with caution due to the limited number of considered subjects, a possible descriptive model explaining the above findings is proposed, which correlates the different responsiveness to visual stimulation strategies with the progression of pathology and the consequent changes on the activation levels of the involved motor and associative areas.

19 citations



Journal ArticleDOI
TL;DR: The devised model can provide a clinically important evaluation of the articular contact of the tibio-femoral joint during the execution of daily activities in living subjects.

2 citations