scispace - formally typeset
M

Masahisa Tabata

Researcher at Waseda University

Publications -  73
Citations -  1350

Masahisa Tabata is an academic researcher from Waseda University. The author has contributed to research in topics: Finite element method & Mixed finite element method. The author has an hindex of 20, co-authored 71 publications receiving 1236 citations. Previous affiliations of Masahisa Tabata include University of Electro-Communications & Kyushu University.

Papers
More filters
Journal ArticleDOI

Bacteria and gallstones. Etiological significance.

TL;DR: In this article, the authors found that Escherichia coli, Bacteroides and Clostridium often found in the biliary tract may contribute to the formation of bile pigment calcium stones by producing beta-glucuronidase and deconjugating bilirubin diglucuronide to form free unconjugated bilirus, which in turn combines with calcium, leading to stone formation.
Journal ArticleDOI

Multiple Solutions of Two-Point Boundary Value Problems of Neumann Type with a Small Parameter

TL;DR: In this paper, the authors studied two-point boundary value problems for two-component systems with a small parameter and showed that the reduced problem has multiple solutions, and the singular perturbation method is used for constructing large amplitude solutions of the original problem.
Journal ArticleDOI

A second order characteristic finite element scheme for convection-diffusion problems

TL;DR: A new characteristic finite element scheme is presented that is of second order accuracy in time increment, symmetric, and unconditionally stable and optimal error estimates are proved in the framework of L^2-theory.
Journal ArticleDOI

On a conservation upwind finite element scheme for convective diffusion equations

Abstract: The purpose ofthis paper is to present a new class of upwind finite element schemes for convective diffusion équations and to gwe error analysis These schemes based on an intégral formula have the following advantages (i) They are effective particularly in the case when the convection is dominated^ (n) Solutions obtained by them satisfy a discrete conservation law, (in) Solutions obtained by a scheme with a particuîar choice satisfy a discrete maximum principle {under suitable conditions) We show that the finite element solutions converge to the exact one with rate 0(h) in L(Q, T, H (Q)) and L (0,T,L(a)) Resumé — Le but de cet article est de présenter une classe nouvelle de schémas d'éléments finis conservatîfs et décentres pour des équations de diffusion avec convection, et de donner des estimations d*erreur Les schémas, qui sont basés sur une formule intégrale, ont les avantages suivants (î) Ils sont effectifs surtout dans le cas où la convection est dominante, (n) Des solutions obtenues par eux satisfont a une loi de conservation discrète, (ni) Des solutions obtenues par un schéma particulier satisfont au principe du maximum discret (sous des conditions convenables) On montre que les solutions obtenues par éléments finis convergent vers la solution exacte en 0(h) dans L(0, T, H 1 ^ ) ) et L°°{0, T, L(H)) INTRODUCTION Consider the convective diffusion équation in Q x ( 0 J ) , (0.1) (*) Reçu le 16 novembre 1979 {) Technical System center, Mitsubishi Heavy Industry, Ltd, Kobe, Japan () Department of Mathematics, Kyoto Umversity, Kyoto, Japan R A I R O Analyse numénque/Numencal Analysis, 0399-0516/1981/3/$ 5 00 © Bordas-Dunod 4 K. BABA, M. TABATA where Q is a bounded domain in U. The solution u{x, t) of (0.1) subject to the free boundary condition d^-b.vu = 0 on ÔQ x (0, T) satisfies the mass-conservation law f u(x, t)dx= f M°(X) dx + f A f /(x, 0 j=Q WTM(Q) = { u ; u is measurable in Q, \\ u \\m>PtQ < + oo } , H(Q) = For 0 < a ^ 1 and a non-negative integer m, « L,oc,n = sup { | Dl u(x)\; \ P | = m, x e Q } , m II w i l m a n = E Iwb.oo.n» j=o II « llm+^oca = II u L,oo,n + I u l«+ot,oo,n > C(Q) = { u ; u is continuously differentiable up to order m in Q } , C(Q) = {u;ue C(Q), || W ||m+aj00)n < + oo } . Let X be a Banach space with norm || . ||x. C(0, T ; X) = { u ; u is continuously differentiable up to order m as a function from [0, T] into X } , II u \\C^O,T;X) = £ max { || D/ w(0 | |x ; t e [0, T]}, j=0
Journal ArticleDOI

Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients

TL;DR: General error estimates are proved for a class of finite element schemes for nonstationary thermal convection problems with temperature-dependent coefficients that turn the diffusion and the buoyancy terms to be nonlinear, which increases the nonlinearity of the problems.