scispace - formally typeset
Search or ask a question
Institution

Shandong University

EducationJinan, Shandong, China
About: Shandong University is a education organization based out in Jinan, Shandong, China. It is known for research contribution in the topics: Laser & Cancer. The organization has 99070 authors who have published 99160 publications receiving 1625094 citations. The organization is also known as: Shāndōng Dàxué.
Topics: Laser, Cancer, Cell growth, Population, Apoptosis


Papers
More filters
Journal ArticleDOI

[...]

Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2964 moreInstitutions (200)
TL;DR: In this article, a search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9.
Abstract: A search for the Standard Model Higgs boson in proton–proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb−1 collected at View the MathML source in 2011 and 5.8 fb−1 at View the MathML source in 2012. Individual searches in the channels H→ZZ(⁎)→4l, H→γγ and H→WW(⁎)→eνμν in the 8 TeV data are combined with previously published results of searches for H→ZZ(⁎), WW(⁎), View the MathML source and τ+τ− in the 7 TeV data and results from improved analyses of the H→ZZ(⁎)→4l and H→γγ channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of View the MathML source is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9, is compatible with the production and decay of the Standard Model Higgs boson.

8,774 citations

Journal ArticleDOI

[...]

Marie Ng1, Tom P Fleming1, Margaret Robinson1, Blake Thomson1, Nicholas Graetz1, Christopher Margono1, Erin C Mullany1, Stan Biryukov1, Cristiana Abbafati2, Semaw Ferede Abera3, Jerry Abraham4, Niveen M E Abu-Rmeileh, Tom Achoki1, Fadia AlBuhairan5, Zewdie Aderaw Alemu6, Rafael Alfonso1, Mohammed K. Ali7, Raghib Ali8, Nelson Alvis Guzmán9, Walid Ammar, Palwasha Anwari10, Amitava Banerjee11, Simón Barquera, Sanjay Basu12, Derrick A Bennett8, Zulfiqar A Bhutta13, Jed D. Blore14, N Cabral, Ismael Ricardo Campos Nonato, Jung-Chen Chang15, Rajiv Chowdhury16, Karen J. Courville, Michael H. Criqui17, David K. Cundiff, Kaustubh Dabhadkar7, Lalit Dandona1, Lalit Dandona18, Adrian Davis19, Anand Dayama7, Samath D Dharmaratne20, Eric L. Ding21, Adnan M. Durrani22, Alireza Esteghamati23, Farshad Farzadfar23, Derek F J Fay19, Valery L. Feigin24, Abraham D. Flaxman1, Mohammad H. Forouzanfar1, Atsushi Goto, Mark A. Green25, Rajeev Gupta, Nima Hafezi-Nejad23, Graeme J. Hankey26, Heather Harewood, Rasmus Havmoeller27, Simon I. Hay8, Lucia Hernandez, Abdullatif Husseini28, Bulat Idrisov29, Nayu Ikeda, Farhad Islami30, Eiman Jahangir31, Simerjot K. Jassal17, Sun Ha Jee32, Mona Jeffreys33, Jost B. Jonas34, Edmond K. Kabagambe35, Shams Eldin Ali Hassan Khalifa, Andre Pascal Kengne36, Yousef Khader37, Young-Ho Khang38, Daniel Kim39, Ruth W Kimokoti40, Jonas Minet Kinge41, Yoshihiro Kokubo, Soewarta Kosen, Gene F. Kwan42, Taavi Lai, Mall Leinsalu22, Yichong Li, Xiaofeng Liang43, Shiwei Liu43, Giancarlo Logroscino44, Paulo A. Lotufo45, Yuan Qiang Lu21, Jixiang Ma43, Nana Kwaku Mainoo, George A. Mensah22, Tony R. Merriman46, Ali H. Mokdad1, Joanna Moschandreas47, Mohsen Naghavi1, Aliya Naheed48, Devina Nand, K.M. Venkat Narayan7, Erica Leigh Nelson1, Marian L. Neuhouser49, Muhammad Imran Nisar13, Takayoshi Ohkubo50, Samuel Oti, Andrea Pedroza, Dorairaj Prabhakaran, Nobhojit Roy51, Uchechukwu K.A. Sampson35, Hyeyoung Seo, Sadaf G. Sepanlou23, Kenji Shibuya52, Rahman Shiri53, Ivy Shiue54, Gitanjali M Singh21, Jasvinder A. Singh55, Vegard Skirbekk41, Nicolas J. C. Stapelberg56, Lela Sturua57, Bryan L. Sykes58, Martin Tobias1, Bach Xuan Tran59, Leonardo Trasande60, Hideaki Toyoshima, Steven van de Vijver, Tommi Vasankari, J. Lennert Veerman61, Gustavo Velasquez-Melendez62, Vasiliy Victorovich Vlassov63, Stein Emil Vollset41, Stein Emil Vollset64, Theo Vos1, Claire L. Wang65, Xiao Rong Wang66, Elisabete Weiderpass, Andrea Werdecker, Jonathan L. Wright1, Y Claire Yang67, Hiroshi Yatsuya68, Jihyun Yoon, Seok Jun Yoon69, Yong Zhao70, Maigeng Zhou, Shankuan Zhu71, Alan D. Lopez14, Christopher J L Murray1, Emmanuela Gakidou1 
University of Washington1, Sapienza University of Rome2, Mekelle University3, University of Texas at San Antonio4, King Saud bin Abdulaziz University for Health Sciences5, Debre markos University6, Emory University7, University of Oxford8, University of Cartagena9, United Nations Population Fund10, University of Birmingham11, Stanford University12, Aga Khan University13, University of Melbourne14, National Taiwan University15, University of Cambridge16, University of California, San Diego17, Public Health Foundation of India18, Public Health England19, University of Peradeniya20, Harvard University21, National Institutes of Health22, Tehran University of Medical Sciences23, Auckland University of Technology24, University of Sheffield25, University of Western Australia26, Karolinska Institutet27, Birzeit University28, Brandeis University29, American Cancer Society30, Ochsner Medical Center31, Yonsei University32, University of Bristol33, Heidelberg University34, Vanderbilt University35, South African Medical Research Council36, Jordan University of Science and Technology37, New Generation University College38, Northeastern University39, Simmons College40, Norwegian Institute of Public Health41, Boston University42, Chinese Center for Disease Control and Prevention43, University of Bari44, University of São Paulo45, University of Otago46, University of Crete47, International Centre for Diarrhoeal Disease Research, Bangladesh48, Fred Hutchinson Cancer Research Center49, Teikyo University50, Bhabha Atomic Research Centre51, University of Tokyo52, Finnish Institute of Occupational Health53, Heriot-Watt University54, University of Alabama at Birmingham55, Griffith University56, National Center for Disease Control and Public Health57, University of California, Irvine58, Johns Hopkins University59, New York University60, University of Queensland61, Universidade Federal de Minas Gerais62, National Research University – Higher School of Economics63, University of Bergen64, Columbia University65, Shandong University66, University of North Carolina at Chapel Hill67, Fujita Health University68, Korea University69, Chongqing Medical University70, Zhejiang University71
TL;DR: The global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013 is estimated using a spatiotemporal Gaussian process regression model to estimate prevalence with 95% uncertainty intervals (UIs).
Abstract: Summary Background In 2010, overweight and obesity were estimated to cause 3·4 million deaths, 3·9% of years of life lost, and 3·8% of disability-adjusted life-years (DALYs) worldwide. The rise in obesity has led to widespread calls for regular monitoring of changes in overweight and obesity prevalence in all populations. Comparable, up-to-date information about levels and trends is essential to quantify population health effects and to prompt decision makers to prioritise action. We estimate the global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013. Methods We systematically identified surveys, reports, and published studies (n=1769) that included data for height and weight, both through physical measurements and self-reports. We used mixed effects linear regression to correct for bias in self-reports. We obtained data for prevalence of obesity and overweight by age, sex, country, and year (n=19 244) with a spatiotemporal Gaussian process regression model to estimate prevalence with 95% uncertainty intervals (UIs). Findings Worldwide, the proportion of adults with a body-mass index (BMI) of 25 kg/m 2 or greater increased between 1980 and 2013 from 28·8% (95% UI 28·4–29·3) to 36·9% (36·3–37·4) in men, and from 29·8% (29·3–30·2) to 38·0% (37·5–38·5) in women. Prevalence has increased substantially in children and adolescents in developed countries; 23·8% (22·9–24·7) of boys and 22·6% (21·7–23·6) of girls were overweight or obese in 2013. The prevalence of overweight and obesity has also increased in children and adolescents in developing countries, from 8·1% (7·7–8·6) to 12·9% (12·3–13·5) in 2013 for boys and from 8·4% (8·1–8·8) to 13·4% (13·0–13·9) in girls. In adults, estimated prevalence of obesity exceeded 50% in men in Tonga and in women in Kuwait, Kiribati, Federated States of Micronesia, Libya, Qatar, Tonga, and Samoa. Since 2006, the increase in adult obesity in developed countries has slowed down. Interpretation Because of the established health risks and substantial increases in prevalence, obesity has become a major global health challenge. Not only is obesity increasing, but no national success stories have been reported in the past 33 years. Urgent global action and leadership is needed to help countries to more effectively intervene. Funding Bill & Melinda Gates Foundation.

7,968 citations

Journal ArticleDOI

[...]

Mohsen Naghavi1, Haidong Wang1, Rafael Lozano1, Adrian Davis2  +728 moreInstitutions (294)
TL;DR: In the Global Burden of Disease Study 2013 (GBD 2013) as discussed by the authors, the authors used the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data.
Abstract: Background Up-to-date evidence on levels and trends for age-sex-specifi c all-cause and cause-specifi c mortality is essential for the formation of global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013) we estimated yearly deaths for 188 countries between 1990, and 2013. We used the results to assess whether there is epidemiological convergence across countries. Methods We estimated age-sex-specifi c all-cause mortality using the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data. We generally estimated cause of death as in the GBD 2010. Key improvements included the addition of more recent vital registration data for 72 countries, an updated verbal autopsy literature review, two new and detailed data systems for China, and more detail for Mexico, UK, Turkey, and Russia. We improved statistical models for garbage code redistribution. We used six different modelling strategies across the 240 causes; cause of death ensemble modelling (CODEm) was the dominant strategy for causes with sufficient information. Trends for Alzheimer's disease and other dementias were informed by meta-regression of prevalence studies. For pathogen-specifi c causes of diarrhoea and lower respiratory infections we used a counterfactual approach. We computed two measures of convergence (inequality) across countries: the average relative difference across all pairs of countries (Gini coefficient) and the average absolute difference across countries. To summarise broad findings, we used multiple decrement life-tables to decompose probabilities of death from birth to exact age 15 years, from exact age 15 years to exact age 50 years, and from exact age 50 years to exact age 75 years, and life expectancy at birth into major causes. For all quantities reported, we computed 95% uncertainty intervals (UIs). We constrained cause-specific fractions within each age-sex-country-year group to sum to all-cause mortality based on draws from the uncertainty distributions. Findings Global life expectancy for both sexes increased from 65.3 years (UI 65.0-65.6) in 1990, to 71.5 years (UI 71.0-71.9) in 2013, while the number of deaths increased from 47.5 million (UI 46.8-48.2) to 54.9 million (UI 53.6-56.3) over the same interval. Global progress masked variation by age and sex: for children, average absolute diff erences between countries decreased but relative diff erences increased. For women aged 25-39 years and older than 75 years and for men aged 20-49 years and 65 years and older, both absolute and relative diff erences increased. Decomposition of global and regional life expectancy showed the prominent role of reductions in age-standardised death rates for cardiovascular diseases and cancers in high-income regions, and reductions in child deaths from diarrhoea, lower respiratory infections, and neonatal causes in low-income regions. HIV/AIDS reduced life expectancy in southern sub-Saharan Africa. For most communicable causes of death both numbers of deaths and age-standardised death rates fell whereas for most non-communicable causes, demographic shifts have increased numbers of deaths but decreased age-standardised death rates. Global deaths from injury increased by 10.7%, from 4.3 million deaths in 1990 to 4.8 million in 2013; but age-standardised rates declined over the same period by 21%. For some causes of more than 100 000 deaths per year in 2013, age-standardised death rates increased between 1990 and 2013, including HIV/AIDS, pancreatic cancer, atrial fibrillation and flutter, drug use disorders, diabetes, chronic kidney disease, and sickle-cell anaemias. Diarrhoeal diseases, lower respiratory infections, neonatal causes, and malaria are still in the top five causes of death in children younger than 5 years. The most important pathogens are rotavirus for diarrhoea and pneumococcus for lower respiratory infections. Country-specific probabilities of death over three phases of life were substantially varied between and within regions. Interpretation For most countries, the general pattern of reductions in age-sex specifi c mortality has been associated with a progressive shift towards a larger share of the remaining deaths caused by non-communicable disease and injuries. Assessing epidemiological convergence across countries depends on whether an absolute or relative measure of inequality is used. Nevertheless, age-standardised death rates for seven substantial causes are increasing, suggesting the potential for reversals in some countries. Important gaps exist in the empirical data for cause of death estimates for some countries; for example, no national data for India are available for the past decade.

5,001 citations

Journal ArticleDOI

[...]

Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

4,756 citations

Journal ArticleDOI

[...]

TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

3,426 citations


Authors

Showing all 99070 results

NameH-indexPapersCitations
Jing Wang1844046202769
Yang Gao1682047146301
Gang Chen1673372149819
Yang Yang1642704144071
Andrew D. Hamilton1511334105439
Ben Zhong Tang1492007116294
Yoshio Bando147123480883
Guanrong Chen141165292218
Karl Jakobs138137997670
Jun Chen136185677368
Shu Li136100178390
Hui Li1352982105903
Lei Zhang135224099365
Elizaveta Shabalina133142192273
George A. Calin133654106942
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

96% related

Zhejiang University
183.2K papers, 3.4M citations

96% related

Nanjing University
105.5K papers, 2.2M citations

95% related

Fudan University
117.9K papers, 2.6M citations

95% related

Peking University
181K papers, 4.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2022391
202110,898
20209,805
20198,537
20187,280
20177,016