scispace - formally typeset
Search or ask a question

Showing papers by "Mashrur Chowdhury published in 2023"


Journal ArticleDOI
TL;DR: In this paper , the authors presented an efficient approach for estimating queue length estimation due to work zone lane closures by developing various statistical and machine-learning models, including quantile regression and multiple linear regression.
Abstract: Freeway maintenance and rehabilitation work usually require closing one or multiple lanes, interrupting traffic flows, and creating queues upstream of the work zone. Public agencies can use queue length as a criterion to determine the maximum duration of lane closures and necessary traffic diversions. Previous studies of estimating queue length due to work zone lane closures are data- and time-intensive. This study presents an efficient approach for estimating queue length estimation due to work zone lane closures by developing various statistical and machine-learning models. The inputs for these queue length estimation models were vehicle demand, lane closure duration, active work zone length, and heavy vehicle percentage. The extent of the queues caused by short-term work zones on freeways for 2-to-1 (one-lane closure on a two-lane freeway), 3-to-1 (one-lane closure on a three-lane freeway), and 3-to-2 (two-lane closure on a three-lane freeway) lane-closure configurations can be estimated with these models. The primary scientific contribution of this study is the applicability of the queue length estimation models in any freeway network with work zone configurations and geometric features such as those used for model development. This research evaluated the efficacy of both statistical and machine-learning models for estimating the queue length considering different work zone scenarios. The accuracy of the queue length estimation models was evaluated for a different network that the original models had not seen previously. Among the statistical models, the quantile regression model had the best accuracy based on mean absolute percentage error (MAPE) for the 2-to-1 lane-closure configuration (88%), and the multiple linear regression had the best accuracy for the 3-to-1 (76%) and 3-to-2 (72%) lane-closure configurations. Among the machine-learning models, the stacking regressor model had the best accuracy for 2-to-1 (95%), 3-to-1 (90%), and 3-to-2 (89%) lane-closure configurations. Based on the analysis, it was observed that machine-learning models performed better than the traditional statistical models in estimating queue lengths.

1 citations


Journal ArticleDOI
TL;DR: In this paper , the authors argue that the academic institutions, industry, and government agencies overseeing AV development and deployment must act proactively to ensure that AVs serve all and do not increase the digital divide in our society.
Abstract: The traditional build-and-expand approach is not a viable solution to keep roadway traffic rolling safely, so technological solutions, such as Autonomous Vehicles (AVs), are favored. AVs have considerable potential to increase the carrying capacity of roads, ameliorate the chore of driving, improve safety, provide mobility for those who cannot drive, and help the environment. However, they also raise concerns over whether they are socially responsible, accounting for issues such as fairness, equity, and transparency. Regulatory bodies have focused on AV safety, cybersecurity, privacy, and legal liability issues, but have failed to adequately address social responsibility. Thus, existing AV developers do not have to embed social responsibility factors in their proprietary technology. Adverse bias may therefore occur in the development and deployment of AV technology. For instance, an artificial intelligence-based pedestrian detection application used in an AV may, in limited lighting conditions, be biased to detect pedestrians who belong to a particular racial demographic more efficiently compared to pedestrians from other racial demographics. Also, AV technologies tend to be costly, with a unique hardware and software setup which may be beyond the reach of lower-income people. In addition, data generated by AVs about their users may be misused by third parties such as corporations, criminals, or even foreign governments. AVs promise to dramatically impact labor markets, as many jobs that involve driving will be made redundant. We argue that the academic institutions, industry, and government agencies overseeing AV development and deployment must act proactively to ensure that AVs serve all and do not increase the digital divide in our society.