scispace - formally typeset
Search or ask a question

Showing papers by "Nanrun Zhou published in 2023"


Journal ArticleDOI
TL;DR: In this paper , the authors proposed a hybrid WSF model based on outlier correction, heuristic algorithms, signal decomposition methods, and DLinear, which comprises the Hampel identifier (HI), the improved variational mode decomposition (IVMD) optimized by grey wolf optimization (GWO), and D-Linear.
Abstract: Precise and dependable wind speed forecasting (WSF) enables operators of wind turbines to make informed decisions and maximize the use of available wind energy. This study proposes a hybrid WSF model based on outlier correction, heuristic algorithms, signal decomposition methods, and DLinear. Specifically, the hybrid model (HI-IVMD-DLinear) comprises the Hampel identifier (HI), the improved variational mode decomposition (IVMD) optimized by grey wolf optimization (GWO), and DLinear. Firstly, outliers in the wind speed sequence are detected and replaced with the HI to mitigate their impact on prediction accuracy. Next, the HI-processed sequence is decomposed into multiple sub-sequences with the IVMD to mitigate the non-stationarity and fluctuations. Finally, each sub-sequence is predicted by the novel DLinear algorithm individually. The predictions are reconstructed to obtain the final wind speed forecast. The HI-IVMD-DLinear is utilized to predict the real historical wind speed sequences from three regions so as to assess its performance. The experimental results reveal the following findings: (a) HI could enhance prediction accuracy and mitigate the adverse effects of outliers; (b) IVMD demonstrates superior decomposition performance; (c) DLinear has great prediction performance and is suited to WSF; and (d) overall, the HI-IVMD-DLinear exhibits superior precision and stability in one-to-four-step-ahead forecasting, highlighting its vast potential for application.

Journal ArticleDOI
TL;DR: In this article , a broadband and efficient three-layer Z-shaped reflective metasurface for linear polarization conversion is designed and six different modes of orbital angular momentum (OAM) waves are generated in the terahertz band.
Abstract: In this paper, a broadband and efficient three-layer Z-shaped reflective metasurface for linear polarization conversion is designed and six different modes of orbital angular momentum (OAM) waves are generated in the terahertz band. The designed metasurface consisted of several units, and it is divided into twelve regions. The phase difference is achieved by changing the structural parameters of the units, and then different modes of OAM waves are generated. The terahertz OAM waves with the modes of ±1, ±2, and ±3 are generated by metasurface with high efficiency and wide bandwidth. The results show that the designed metasurface could produce high purity terahertz OAM waves with six different modes, and the reflection amplitude of the metasurface unit is more than 0.9 in the frequency range of 1.0 THz to 1.8 THz. The generated OAM waves with the modes of ±1 and ±2 have a mode purity more than 90%. The designed metasurface has good wavefront control ability, which provides an effective method to generate multimode OAM waves.

Journal ArticleDOI
TL;DR: In this article , a joint optimization scheme for the reconfigurable intelligent surface (RIS) phase shift and the power allocation is proposed in the untrusted relay (UR) networks assisted by the RIS.
Abstract: To further improve the secrecy rate, a joint optimization scheme for the reconfigurable intelligent surface (RIS) phase shift and the power allocation is proposed in the untrusted relay (UR) networks assisted by the RIS. The eavesdropping on the UR is interfered by a source-based jamming strategy. Under the constraints of unit modulus and total power, the RIS phase shift, the power allocation between the confidential signal and the jamming signal, and the power allocation between the source node and the UR are jointly optimized to maximize the secrecy rate. The complex multivariable coupling problem is decomposed into three sub-problems, and the non-convexity of the objective function and the constraints is solved with semi-definite relaxation. Simulation results indicate that the secrecy rate is remarkably enhanced with the proposed scheme compared with the equal power allocation scheme, the random phase shift scheme, and the no-RIS scheme.