scispace - formally typeset
Search or ask a question

Showing papers by "Nicholas J. Strausfeld published in 1971"


Journal ArticleDOI
TL;DR: The structure of optic cartridges in the frontal part of the lamina ganglionaris (the outermost synaptic region of the visual system of insects) has been analysed from selective and reduced silver stained preparations and is tentatively interpreted as a means of providing at least 6 separate channels of information to the medulla.
Abstract: The structure of optic cartridges in the frontal part of the lamina ganglionaris (the outermost synaptic region of the visual system of insects) has been analysed from selective and reduced silver stained preparations. The results, obtained from studies on five different species of Diptera, confirm that six retinula cells, together situated in a single ommatidium, project to six optic cartridges in a manner no different from that described by Braitenberg (1967) from Musca domestica. Each optic cartridge contains five first order interneurons (monopolar cells) which project together to a single column in the second synaptic region, the medulla. The dendritic arrangement of two of these neurons (L1 and L2) indicates that they must make contact with all six retinula cell terminals of a cartridge (R1–R6). Two others (L3 and L5) have processes that reach to only some of the retinula cell endings. A fifth form of monopolar cell (L4) sometimes has an arrangement of processes which could establish contact with all six retinula cells: other cells of the same type may contact only a proportion of them. This neuron (L4) also has an arrangement of collaterals such as to allow lateral interaction between neigbouring optic cartridges. The processes of the other four monopolar cells (L1, L2, L3 and L5) are usually contained within a single cartridge. In addition to these elements there is a pair of receptor prolongations (the long visual fibres, R7 and R8) that bypasses all other elements of a cartridge, including the receptor terminals R1–R6, and finally terminates in the medulla. Four types of neurons, which are derived from perikarya lying just beneath or just above the second synaptic region, send fibres across the first optic chiasma to the lamina. Like all the other interneuronal elements of cartridges the terminals of these so-called “centrifugal” cells have characteristic topographical relationships with the cyclic arrangement of retinula cell terminals. Apart from the above mentioned neurons there is also a system of tangential fibres whose processes invade single cartridges but which together could provide a substrate for relaying information to the medulla derived from aggregates of cartridges.

167 citations


Journal ArticleDOI
TL;DR: Each optic cartridge in the lamina of Diptera1 gives rise to a bundle of fibres composed of the prolongations of at least 11 neurons (two first order receptors, R7 and R8, five monopolar cells, L1–L5 and four “centrifugal” cells) that project to the outer surface of the second synaptic region, the medulla.
Abstract: SummaryEach optic cartridge in the lamina of Diptera1 gives rise to a bundle of fibres composed of the prolongations of at least 11 neurons (two first order receptors, R7 and R8, five monopolar cells, L1–L5 and four “centrifugal” cells, T1, T1a, C2 and C3). The bundles project to the outer surface of the second synaptic region, the medulla. The projection patterns of the bundles means that a point for point map of the cartridge arrangement in the lamina is conferred on the medulla. The cross-over of bundles, along the horizontal axis of the eye, merely reverses the lamina map on the medulla. All eleven fibres that enter a bundle at the lamina are contained within it as far as the medulla.

42 citations