scispace - formally typeset
Search or ask a question

Showing papers by "Nico Pfeifer published in 2007"


Journal ArticleDOI
TL;DR: The basic concepts and the current abilities of TOPP are described and illustrated in the context of two example applications: the identification of peptides from a raw dataset through database search and the complex analysis of a standard addition experiment for the absolute quantitation of biomarkers.
Abstract: Motivation: Experimental techniques in proteomics have seen rapid development over the last few years. Volume and complexity of the data have both been growing at a similar rate. Accordingly, data management and analysis are one of the major challenges in proteomics. Flexible algorithms are required to handle changing experimental setups and to assist in developing and validating new methods. In order to facilitate these studies, it would be desirable to have a flexible 'toolbox' of versatile and user-friendly applications allowing for rapid construction of computational workflows in proteomics. Results: We describe a set of tools for proteomics data analysis---TOPP, The OpenMS Proteomics Pipeline. TOPP provides a set of computational tools which can be easily combined into analysis pipelines even by non-experts and can be used in proteomics workflows. These applications range from useful utilities (file format conversion, peak picking) over wrapper applications for known applications (e.g. Mascot) to completely new algorithmic techniques for data reduction and data analysis. We anticipate that TOPP will greatly facilitate rapid prototyping of proteomics data evaluation pipelines. As such, we describe the basic concepts and the current abilities of TOPP and illustrate these concepts in the context of two example applications: the identification of peptides from a raw dataset through database search and the complex analysis of a standard addition experiment for the absolute quantitation of biomarkers. The latter example demonstrates TOPP's ability to construct flexible analysis pipelines in support of complex experimental setups. Availability: The TOPP components are available as open-source software under the lesser GNU public license (LGPL). Source code is available from the project website at www.OpenMS.de Contact: oliver.kohlbacher@uni-tuebingen.de

297 citations


Journal ArticleDOI
TL;DR: A new kernel function is introduced which can be applied in combination with support vector machines to a wide range of computational proteomics problems and shows excellent performance while requiring only very small training sets.
Abstract: High-throughput peptide and protein identification technologies have benefited tremendously from strategies based on tandem mass spectrometry (MS/MS) in combination with database searching algorithms. A major problem with existing methods lies within the significant number of false positive and false negative annotations. So far, standard algorithms for protein identification do not use the information gained from separation processes usually involved in peptide analysis, such as retention time information, which are readily available from chromatographic separation of the sample. Identification can thus be improved by comparing measured retention times to predicted retention times. Current prediction models are derived from a set of measured test analytes but they usually require large amounts of training data. We introduce a new kernel function which can be applied in combination with support vector machines to a wide range of computational proteomics problems. We show the performance of this new approach by applying it to the prediction of peptide adsorption/elution behavior in strong anion-exchange solid-phase extraction (SAX-SPE) and ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC). Furthermore, the predicted retention times are used to improve spectrum identifications by a p-value-based filtering approach. The approach was tested on a number of different datasets and shows excellent performance while requiring only very small training sets (about 40 peptides instead of thousands). Using the retention time predictor in our retention time filter improves the fraction of correctly identified peptide mass spectra significantly. The proposed kernel function is well-suited for the prediction of chromatographic separation in computational proteomics and requires only a limited amount of training data. The performance of this new method is demonstrated by applying it to peptide retention time prediction in IP-RP-HPLC and prediction of peptide sample fractionation in SAX-SPE. Finally, we incorporate the predicted chromatographic behavior in a p-value based filter to improve peptide identifications based on liquid chromatography-tandem mass spectrometry.

82 citations


Journal ArticleDOI
TL;DR: The power of this new, general model selection procedure and the benefits of fitting kernels to problem classes are demonstrated by adapting oligo kernels for bacterial gene start detection.
Abstract: Biological data mining using kernel methods can be improved by a task-specific choice of the kernel function. Oligo kernels for genomic sequence analysis have proven to have a high discriminative power and to provide interpretable results. Oligo kernels that consider subsequences of different lengths can be combined and parameterized to increase their flexibility. For adapting these parameters efficiently, gradient-based optimization of the kernel-target alignment is proposed. The power of this new, general model selection procedure and the benefits of fitting kernels to problem classes are demonstrated by adapting oligo kernels for bacterial gene start detection.

56 citations