scispace - formally typeset
Search or ask a question

Showing papers by "Paolo Bonasoni published in 2012"


01 Dec 2012
TL;DR: In this paper, the seasonal variation of the aerosol single scattering albedo, backscatter fraction and Angstrom exponent changes from site to site but the timing can be related to aerosol sources and transport processes known to impact the individual sites.
Abstract: Abstract High altitude mountaintop observatories provide the opportunity to study aerosol properties in the free troposphere without the added expense and difficulty of making airborne measurements. Climatologies for free tropospheric aerosol radiative properties in cloud-free air, including light scattering, light absorption, light extinction, single scattering albedo, Angstrom exponent, hemispheric backscatter fraction and radiative forcing efficiency, from twelve high altitude (2.2–5.1 km) measurement platforms are presented at low relative humidity and at standard temperature and pressure. These climatologies utilize data from ten mountaintop observatories in the 20–50oN latitude band: Mauna Loa, USA; Lulin Mountain, Taiwan; Nepal Climate Observatory — Pyramid; Izana, Spain; Mount Waliguan, China; Beo Moussala, Bulgaria; Mount Bachelor, USA; Monte Cimone, Italy; Jungfraujoch, Switzerland; Whistler Mountain, Canada. Results are also included from two multi-year, in-situ aerosol vertical profiling programs: Southern Great Plains, USA and Bondville, USA. The amount of light absorption and scattering observed at these high altitude sites either peaks in the spring or it has a broad spring to summer enhancement. The seasonal variation of the aerosol single scattering albedo, backscatter fraction and Angstrom exponent changes from site to site but the timing can be related to aerosol sources and transport processes known to impact the individual sites. The seasonal variation of in-situ aerosol light extinction from these high altitude measurements is in excellent agreement with extinction values derived from CALIPSO lidar measurements. Analysis of the systematic variability among in-situ aerosol properties shows that these relationships can be used to infer aerosol types. In particular, the relationship between single scattering albedo and Angstrom exponent can indicate the presence of dust aerosol. Radiative forcing efficiency (RFE = aerosol forcing/aerosol optical depth) is used to assess the importance of single scattering albedo and backscatter fraction on aerosol forcing by eliminating aerosol amount (i.e., aerosol optical depth) from the calculation. Variability in monthly cycles of RFE corresponds with changes in single scattering albedo and hemispheric backscatter fraction. Utilizing site-specific, climatological values of single scattering albedo and backscatter fraction to calculate RFE results in departures from the monthly median values of RFE typically in the range 10–30%. The greatest discrepancy occurs for months with low aerosol loading where the observed variability of single scattering albedo and backscatter fraction is the greatest. At most sites the radiative forcing efficiency at low aerosol loading (light scattering −1 ) is slightly less negative (more warming) than at higher aerosol loading.

107 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed and classified stratospheric airmass transport events (ST) detected at the Nepal Climate Observatory-Pyramid (NCO-P; 27°57′N, 86°48′E, 5079 m MSL) from March 2006 to February 2008.
Abstract: This work analyzes and classifies stratospheric airmass transport events (ST) detected at the Nepal Climate Observatory–Pyramid (NCO-P; 27°57′N, 86°48′E, 5079 m MSL) Global Atmospheric Watch–World Meteorological Organization station from March 2006 to February 2008 For this purpose, in situ ozone (O3), meteorological parameters (atmospheric pressure and relative humidity), and black carbon (BC) are analyzed The paper describes the synoptic-scale meteorological scenarios that are able to favor the development of ST over the southern Himalaya, by analyzing the meteorological fields provided by the ECMWF model (geopotential height, wind speed, and potential vorticity), satellite Ozone Monitoring Instrument data (total column ozone), and three-dimensional back trajectories calculated with the Lagrangian Analysis Tool (LAGRANTO) model The study, which represents the first “continuous” classification of ST in the southern Himalaya, permitted classification of 94% of ST days within four synoptic-scale

23 citations