scispace - formally typeset
Search or ask a question

Showing papers by "Peter Hacke published in 2021"



Journal ArticleDOI
TL;DR: In this paper, a method using appropriate materials characterization and modelling to validate the failure mechanisms induced in C-AST such that they can increase confidence in the test protocol is demonstrated by applying it to a known cracking failure of a specific polyamide (PA)-based backsheet material.
Abstract: Novel methods for advancing reliability testing of photovoltaic (PV) modules and materials have recently been developed. Combined-accelerated stress testing (C-AST) is one such method which has demonstrated reliable reproduction of some field-failures which were not reproducible by standard certification tests. To increase confidence and assist in the development of C-AST, and other new testing protocols, it is important to validate that the failure modes observed and mechanisms induced are representative of those observed in the field, and not the product of unrealistic stress conditions. Here we outline a method using appropriate materials characterization and modelling to validate the failure mechanisms induced in C-AST such that we can increase confidence in the test protocol. The method is demonstrated by applying it to a known cracking failure of a specific polyamide (PA)-based backsheet material. We found that the failure of the PA-based backsheet was a result of a combination of stress factors. Photo-oxidation from ultra-violet (UV) radiation exposure caused a reduction in fracture toughness, which ultimately lead to the cracking failure. We show that the chemical and structural changes observed in the backsheet following C-AST aging were also observed in field-aged samples. These results increase confidence that the conditions applied in C-AST are representative of the field and demonstrates our approach to validating the failure mechanisms induced.

14 citations


Journal ArticleDOI
TL;DR: In this article, the effects of positive bias on module performance are confirmed and the underlying chemical degradation processes are more thoroughly investigated to reveal different degradation pathways from those previously reported in negative bias studies.

10 citations


Journal ArticleDOI
TL;DR: In this article, a new co-extruded polyamide (PA)-based backsheet was tested using combined-accelerated stress testing (C-AST) and demonstrated a greater lifetime than AAA, and some other fluoropolymer-based backsheets such as polyvinylidene fluoride.
Abstract: The viability of novel coextruded, fluoropolymer-free backsheets for photovoltaic (PV) modules has been questioned as a result of a large number of early-life backsheet failures in PV installations containing one of the earliest co-extruded polyamide (PA)-based backsheet to reach the market, “AAA.” New PV reliability testing protocols have been recently developed and applied to backsheets to reproduce failures observed in the field and evaluate the durability of novel backsheet materials and designs prior to commercialization. A new co-extruded PA-based backsheet was tested using combined-accelerated stress testing (C-AST) and demonstrated a greater lifetime than AAA, and some other fluoropolymer-based backsheets such as polyvinylidene fluoride. The improved PA-based backsheet also eventually failed by through-thickness cracking. Using surface and bulk material characterization techniques, we performed a comprehensive study of material properties before and after the stress testing. Aging of the backsheet resulted in an increase of surface roughness by erosion of the outer PA layer. However the failure is more likely related to an increase in crystallinity of the polyolefin core layer reducing the backsheet tearing energy. The analysis can ultimately inform on the specific weaknesses of the materials so that the manufacturer can improve the backsheet design to extend its lifetime.

5 citations


Proceedings ArticleDOI
20 Jun 2021
TL;DR: In this paper, the adverse effects of ultraviolet-induced degradation (UVID) on a variety of high-efficiency silicon wafer-based bifacial cell technologies, including silicon heterojunction (SHJ), interdigitated back contact (IBC), passivated emitter rear contact (PERC), and passivemitter rear totally-diffused (PERT), were examined.
Abstract: Bifacial technology enables solar cells to offer higher power output and lower levelized cost of energy compared to their monofacial counterparts. Here, we examined the adverse effects of ultraviolet-induced degradation (UVID) on a variety of high-efficiency silicon wafer-based bifacial cell technologies, including silicon heterojunction (SHJ), interdigitated back contact (IBC), passivated emitter rear contact (PERC), and passivated emitter rear totally-diffused (PERT). Both the front and rear sides of bifacial cells without any encapsulation were exposed to an artificially accelerated UV exposure test. After 2000 h of UV irradiation, the bifacial cells exhibited greater power loss with backside exposure indicating potential sensitivity of the rear passivation to UV. The highest power degradation is observed in SHJ cells, followed by p-PERC and n-PERT cell technologies. The degradation in SHJ cells is attributed to the reduction in V oc and FF, while the degradation in p-PERC and n-PERT cells is correlated with a significant drop in I sc . This suggests that each cell type/make degrades via different degradation pathways.

5 citations