scispace - formally typeset
Search or ask a question

Showing papers by "Peter Roslev published in 1999"


Journal ArticleDOI
TL;DR: In this study the soil methane-oxidizing population was characterized by both labelling soil microbiota with14CH4 and analyzing a total soil monooxygenase gene library, and an unknown group of bacteria belonging to the α subclass of the class Proteobacteria was present.
Abstract: The global methane cycle includes both terrestrial and atmospheric processes and may contribute to feedback regulation of the climate. Most oxic soils are a net sink for methane, and these soils consume approximately 20 to 60 Tg of methane per year. The soil sink for atmospheric methane is microbially mediated and sensitive to disturbance. A decrease in the capacity of this sink may have contributed to the approximately 1%. year(-1) increase in the atmospheric methane level in this century. The organisms responsible for methane uptake by soils (the atmospheric methane sink) are not known, and factors that influence the activity of these organisms are poorly understood. In this study the soil methane-oxidizing population was characterized by both labelling soil microbiota with (14)CH(4) and analyzing a total soil monooxygenase gene library. Comparative analyses of [(14)C]phospholipid ester-linked fatty acid profiles performed with representative methane-oxidizing bacteria revealed that the soil sink for atmospheric methane consists of an unknown group of methanotrophic bacteria that exhibit some similarity to type II methanotrophs. An analysis of monooxygenase gene libraries from the same soil samples indicated that an unknown group of bacteria belonging to the alpha subclass of the class Proteobacteria was present; these organisms were only distantly related to extant methane-oxidizing strains. Studies on factors that affect the activity, population dynamics, and contribution to global methane flux of "atmospheric methane oxidizers" should be greatly facilitated by use of biomarkers identified in this study.

266 citations


Journal ArticleDOI
TL;DR: In this article, the kinetics of microbial DEHP mineralization was studied in laboratory microcosms with sewage sludge and agricultural soil, and it was estimated that > 41% of the DEHP in sludge-amended soil will have escaped mineralization after 1 year.
Abstract: Sewage sludge is frequently used as a soil fertilizer although it may contain elevated concentrations of priority pollutants including di-(2-ethylhexyl)phthalate (DEHP). In the present study, the kinetics of microbial [[sup 14]C]DEHP mineralization was studied in laboratory microcosms with sewage sludge and agricultural soil. A biphasic model with two independent kinetic expressions was used to fit the mineralization data. The initial mineralization activity was described well by first-order kinetics, whereas mineralization in long-term incubations was described better by fractional power kinetics. The mineralization activity was much lower in the late phase presumably due to a decline in the bioavailability of DEHP caused by diffusion-limited desorption. The initial DEHP mineralization rate in sludge-amended soil varied between 3.7 and 20.3 ng of DEHP (g dw)[sup [minus]1]d[sup [minus]1] depending on incubation conditions. Aerobic DEHP mineralization was 4--5 times faster than anaerobic mineralization, DEHP mineralization in sludge-amended soil was much more temperature sensitive than was DEHP mineralization in soil without sludge. Indigenous microorganisms in the sewage sludge appeared to dominate DEHP degradation in sludge-amended soil. It was estimated that > 41% of the DEHP in sludge-amended soil will have escaped mineralization after 1 year. In the absence of oxygen, > 68% of the DEHP willmore » not be mineralized within 1 year. Collectively, the data suggest that a significant fraction of the DEHP in sludge-amended soils may escape mineralization under in situ conditions.« less

94 citations


Journal ArticleDOI
TL;DR: It is suggested that methanotrophs with relatively high carbon conversion efficiencies and very similar PLFA compositions dominate atmospheric methane metabolism in different soils.
Abstract: Microorganisms that oxidize atmospheric methane in soils were characterized by radioactive labelling with 14CH4 followed by analysis of radiolabelled phospholipid ester-linked fatty acids (14C-PLFAs). The radioactive fingerprinting technique was used to compare active methanotrophs in soil samples from Greenland, Denmark, the United States, and Brazil. The 14C-PLFA fingerprints indicated that closely related methanotrophic bacteria were responsible for the oxidation of atmospheric methane in the soils. Significant amounts of labelled PLFAs produced by the unknown soil methanotrophs coeluted with a group of fatty acids that included i17:0, a17:0, and 17:1ω8c (up to 9.0% of the total 14C-PLFAs). These PLFAs are not known to be significant constituents of methanotrophic bacteria. The major PLFAs of the soil methanotrophs (73.5 to 89.0% of the total PLFAs) coeluted with 18:1 and 18:0 fatty acids (e.g., 18:1ω9, 18:1ω7, and 18:0). The 14C-PLFAs fingerprints of the soil methanotrophs that oxidized atmospheric methane did not change after long-term methane enrichment at 170 ppm CH4. The 14C-PLFA fingerprints of the soil methanotrophs were different from the PLFA profiles of type I and type II methanotrophic bacteria described previously. Some similarity at the PLFA level was observed between the unknown soil methanotrophs and the PLFA phenotype of the type II methanotrophs. Methanotrophs in Arctic, temperate, and tropical regions assimilated between 20 and 54% of the atmospheric methane that was metabolized. The lowest relative assimilation (percent) was observed for methanotrophs in agricultural soil, whereas the highest assimilation was observed for methanotrophs in rain forest soil. The results suggest that methanotrophs with relatively high carbon conversion efficiencies and very similar PLFA compositions dominate atmospheric methane metabolism in different soils. The characteristics of the methane metabolism and the 14C-PLFA fingerprints excluded any significant role of autotrophic ammonia oxidizers in the metabolism of atmospheric methane.

76 citations