scispace - formally typeset
Search or ask a question

Showing papers by "Qunyang Li published in 2023"


Journal ArticleDOI
TL;DR: In this article , single-layered and three-dimensional reduced graphene oxide (rGO)/Ti3C2Tx (B-rGO@Ti3c2Tx) nanohybrids were constructed using bis(2-hydroxyethyl) terephthalate (BHET) as a coupling agent between rGO and Ti3C 2Tx through covalent and hydrogen bonds.
Abstract: Incorporation of functional nanofillers can unlock the potential of polymers as advanced materials. Herein, single-layered and three-dimensional reduced graphene oxide (rGO)/Ti3C2Tx (B-rGO@Ti3C2Tx) nanohybrids were constructed using bis(2-hydroxyethyl) terephthalate (BHET) as a coupling agent between rGO and Ti3C2Tx through covalent and hydrogen bonds. It is found that BHET can not only resist the weak oxidization of Ti3C2Tx to some degree but also prevent the self-stacking of Ti3C2Tx and rGO sheets. Then, B-rGO@Ti3C2Tx was used as a functional nanofiller and three-dimensional chain extender for preparing the waterborne polyurethane (WPU) nanocomposite through in situ polymerization. Compared with WPU nanocomposites with an equivalent amount of Ti3C2Tx/rGO@Ti3C2Tx, although containing an equivalent amount of BHET, WPU/B-rGO@Ti3C2Tx nanocomposites show significantly improved performance. For example, 5.66 wt % of B-rGO@Ti3C2Tx endows WPU with a high tensile strength of 36.0 MPa (improved by 380%), thermal conductivity of 0.697 W·m-1·K-1, electrical conductivity of 1.69 × 10-2 S/m (enhanced by 39 times), good strain-sensing behavior, electromagnetic interference (EMI)-shielding performance of 49.5 dB in the X-band, and excellent thermal stability. Therefore, the construction of rGO@Ti3C2Tx nanohybrids with the aid of chain extenders may unlock new possibilities of polyurethane as smart materials.

1 citations


Journal ArticleDOI
03 Jun 2023-Friction
TL;DR: In this article , an improved shear-lag model with a trapezoidal-shaped cohesive zone was proposed to derive an analytical solution for the decohesion behavior of the frictional adhesive interface.
Abstract: Abstract Composite structures consisting of two-dimensional (2D) materials deposited on elastic substrates have a wide range of potential applications in flexible electronics. For such devices, robust 2D film/substrate interfacial adhesion is essential for their reliable performance when subjected to external thermal and mechanical loads. To better understand the strength and failure behavior of the 2D film/substrate interfaces, two types of graphene/polymer samples with distinct interfacial adhesion properties are fabricated and tested by uniaxially stretching the substrates. Depending on the interfacial adhesion, two drastically different debonding rates are observed, i.e., rapid snap-through debonding and more progressive crack propagation. Motivated by the experimental observation, we propose an improved shear-lag model with a trapezoidal-shaped cohesive zone to derive an analytical solution for the decohesion behavior. The theoretical model reveals that the decohesion behavior of the frictional adhesive interface is governed by three dimensionless parameters. Particularly, the dimensionless length of the film essentially determines the decohesion rate; while the other two parameters affect the critical substrate strain to initiate debonding. By fitting the experimental data with the theoretical model, the intrinsic adhesion properties of the two samples are obtained with physically meaningful values. This work offers an analytical solution to describing the decohesion behavior of general thin film/substrate systems with a frictional adhesive interface, which is beneficial for characterizing and optimizing the mechanical properties of various thin film/polymer devices.

Journal ArticleDOI
TL;DR: A biomaterial-based sono-electro-mechanical therapeutic system for long-gap peripheral nerve repair through harnessing both bioelectric and biomechanical modalities with neural regenerative potential is presented in this article .


Journal ArticleDOI
TL;DR: In this paper , a theoretical model is proposed to correlate surface conductivity with the sequential stacking state of the graphene layers of tMLG, which is then employed to extract the complex structure of a small-angle twisted multilayer graphene sample with crystalline defects.
Abstract: ABSTRACT The stacking state of atomic layers critically determines the physical properties of twisted van der Waals materials. Unfortunately, precise characterization of the stacked interfaces remains a great challenge as they are buried internally. With conductive atomic force microscopy, we show that the moiré superlattice structure formed at the embedded interfaces of small-angle twisted multilayer graphene (tMLG) can noticeably regulate surface conductivity even when the twisted interfaces are 10 atomic layers beneath the surface. Assisted by molecular dynamics (MD) simulations, a theoretical model is proposed to correlate surface conductivity with the sequential stacking state of the graphene layers of tMLG. The theoretical model is then employed to extract the complex structure of a tMLG sample with crystalline defects. Probing and visualizing the internal stacking structures of twisted layered materials is essential for understanding their unique physical properties, and our work offers a powerful tool for this via simple surface conductivity mapping.

Journal ArticleDOI
01 Sep 2023-Carbon
TL;DR: In this article , the authors used two-step chemical vapor deposition to synthesize twisted bilayer graphene (TBG) exhibiting multiple twist angles on hexagonal boron nitride (h-BN).

Journal ArticleDOI
TL;DR: In this article , a silica/polydimethylsiloxane (PDMS) nanocomposite coating (SPNC) is presented, wherein silica acts as a consecutive phase and nanophased PDMS is covalently embedded.
Abstract: Antiadhesive surfaces have been gaining continuous attention, because of the scientific and industrial significance. Slippery surfaces and antismudge coatings with antiadhesive behavior have been readily designed and prepared. However, improving robustness of the surfaces, especially the simultaneous demonstration of features of high hardness, excellent adhesion to different substrates, and high thermal stability, is constantly challenging. Herein, we present a silica/polydimethylsiloxane (PDMS) nanocomposite coating (SPNC), wherein silica acts as a consecutive phase and nanophased PDMS is covalently embedded. The nanoconfined PDMS phase exhibits enhanced thermal stability and endows SPNC with slippery behavior; meanwhile, enrichment of PDMS on the surface renders a gradient composition of the coating. Accordingly, the inorganic-organic SPNC simultaneously displays a high nanoindentation hardness of 3.07 GPa and a pencil hardness over 9H, outstanding thermal stability of the slippery performance up to 400 °C, and excellent adhesion strength to different substrates. Additionally, SPNC exhibits high optical transparency, flexibility, resistance to bacterial clone, and chemical corrosion. With the scalable fabrication process, it can be envisioned that the antiadhesive coating with unprecedented comprehensive merits in this work has significant potentials for large-area applications, especially under severe service environments.

Journal ArticleDOI
TL;DR: In this article , a modularized growth strategy for batch production of wafer-scale transition metal dichalcogenides (TMDs) was developed, enabling the fabrication of 2-inch wafers (15 pieces per batch) up to a record-large size 12-inch Wafers.