scispace - formally typeset
Search or ask a question

Showing papers by "Rachael D. Seidler published in 2017"


Journal ArticleDOI
02 Aug 2017-PLOS ONE
TL;DR: The association between focal GM increase and balance changes suggests that HDBR also may result in neuroplastic adaptation, and the results parallel the sensorimotor deficits that astronauts experience post-flight.
Abstract: Background Adverse effects of spaceflight on sensorimotor function have been linked to altered somatosensory and vestibular inputs in the microgravity environment. Whether these spaceflight sequelae have a central nervous system component is unknown. However, experimental studies have shown spaceflight-induced brain structural changes in rodents’ sensorimotor brain regions. Understanding the neural correlates of spaceflight-related motor performance changes is important to ultimately develop tailored countermeasures that ensure mission success and astronauts’ health. Method Head down-tilt bed rest (HDBR) can serve as a microgravity analog because it mimics body unloading and headward fluid shifts of microgravity. We conducted a 70-day 6° HDBR study with 18 right-handed males to investigate how microgravity affects focal gray matter (GM) brain volume. MRI data were collected at 7 time points before, during and post-HDBR. Standing balance and functional mobility were measured pre and post-HDBR. The same metrics were obtained at 4 time points over ~90 days from 12 control subjects, serving as reference data. Results HDBR resulted in widespread increases GM in posterior parietal regions and decreases in frontal areas; recovery was not yet complete by 12 days post-HDBR. Additionally, HDBR led to balance and locomotor performance declines. Increases in a cluster comprising the precuneus, precentral and postcentral gyrus GM correlated with less deterioration or even improvement in standing balance. This association did not survive Bonferroni correction and should therefore be interpreted with caution. No brain or behavior changes were observed in control subjects. Conclusions Our results parallel the sensorimotor deficits that astronauts experience post-flight. The widespread GM changes could reflect fluid redistribution. Additionally, the association between focal GM increase and balance changes suggests that HDBR also may result in neuroplastic adaptation. Future studies are warranted to determine causality and underlying mechanisms.

67 citations


Journal ArticleDOI
TL;DR: Although results did not survive FDR correction, their effect sizes suggest that regional cerebellar volume selectively contributes to cognitive and motor skill, suggesting parallel contributions to performance.
Abstract: Cerebellar volume declines with aging. Few studies have investigated age differences in regional cerebellar volume (RCV) and their association with motor and cognitive function. In 213 healthy older adults, we investigated the association of age with motor skills, cognition and RCV. Subsequently, we studied the association of RCV with motor skills and cognition. RCVs were derived from T1-weighted MRI scans using the automated SUIT segmentation method and clustered using principal component analysis (PCA). Motor skill (manual dexterity, tapping speed, bimanual visuomotor coordination, grip force) and cognition (mental rotation, verbal memory, inhibition, mental flexibility) were assessed. Behavioral measures were clustered into compounds using PCA: left hand motor skill, right hand motor skill, verbal memory and mental flexibility, and mental rotation & inhibition. Volume of the rostral middle frontal gyri (rMFG) and premotor areas (PMA) were related to performance for reference. Analyses were adjusted for age, sex, and education. Volume of the cerebellar anterior lobe and top of the superior posterior lobe were positively associated with motor skill. Volume of the bottom part of the posterior superior lobe and the inferior posterior lobe was positively associated with cognition. PMA volume was associated with cognition and motor skill and rMFG volume with motor skill. Although these results did not survive FDR correction, their effect sizes suggest that regional cerebellar volume selectively contributes to cognitive and motor skill. Effect sizes of cerebellar associations with performance were similar to those of rMFG/PMA and performance suggesting parallel contributions to performance.

47 citations


Journal ArticleDOI
TL;DR: It is advocated that individual differences approaches can lead to new insights into human sensorimotor performance, and a greater understanding of the factors underlying the wide range of performance capabilities seen across individuals can promote personalized medicine and refinement of rehabilitation strategies.
Abstract: Here we provide an overview of findings and viewpoints on the mechanisms of sensorimotor learning presented at the 2016 Biomechanics and Neural Control of Movement (BANCOM) conference in Deer Creek, OH. This field has shown substantial growth in the past couple of decades. For example it is now well accepted that neural systems outside of primary motor pathways play a role in learning. Frontoparietal and anterior cingulate networks contribute to sensorimotor adaptation, reflecting strategic aspects of exploration and learning. Longer term training results in functional and morphological changes in primary motor and somatosensory cortices. Interestingly, re-engagement of strategic processes once a skill has become well learned may disrupt performance. Efforts to predict individual differences in learning rate have enhanced our understanding of the neural, behavioral, and genetic factors underlying skilled human performance. Access to genomic analyses has dramatically increased over the past several years. This has enhanced our understanding of cellular processes underlying the expression of human behavior, including involvement of various neurotransmitters, receptors, and enzymes. Surprisingly our field has been slow to adopt such approaches in studying neural control, although this work does require much larger sample sizes than are typically used to investigate skill learning. We advocate that individual differences approaches can lead to new insights into human sensorimotor performance. Moreover, a greater understanding of the factors underlying the wide range of performance capabilities seen across individuals can promote personalized medicine and refinement of rehabilitation strategies, which stand to be more effective than “one size fits all” treatments.

36 citations


Journal ArticleDOI
TL;DR: It is shown that facilitating the right prefrontal cortex with anodal transcranial direct current stimulation enhances sensorimotor savings compared with sham stimulation, and this findings support the hypothesis that theright prefrontal cortex contributes to sensorsimotor adaptation and savings.
Abstract: We have previously reported that visuospatial working memory performance and magnitude of activation in the right dorsolateral prefrontal cortex predict the rate of manual visuomotor adaptation. Se...

29 citations


23 Jan 2017
TL;DR: In this paper, a long duration head down tilt bed rest (HDBR) study was conducted to identify the relationships between changes in neurocognitive function and neural structural alterations in a spaceflight analog environment.
Abstract: We have recently completed a long duration head down tilt bed rest (HDBR) study in which we performed structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations in a spaceflight analog environment. We are also collecting the same measures in crewmembers prior to and following a six month International Space Station mission. We will present data demonstrating that bed rest resulted in functional mobility and balance deterioration with recovery post-HDBR. We observed numerous changes in brain structure, function, and connectivity relative to a control group which were associated with pre to post bed rest changes in sensorimotor function. For example, gray matter volume (GMv) increased in posterior parietal areas and decreased in frontal regions. GMv increases largely overlapped with fluid decreases and vice versa. Larger increases in precentral gyrus (M1)/ postcentral gyrus (S1+2) GMv and fluid decreases were associated with smaller balance decrements. Vestibular activation in the bilateral insular cortex increased with bed rest and subsequently recovered. Larger increases in vestibular activation in multiple brain regions were associated with greater decrements in balance and mobility. We found connectivity increases between left M1 with right S1+2 and the superior parietal lobule, and right vestibular cortex with the cerebellum. Decreases were observed between right Lobule VIII with right S1+2 and the supramarginal gyrus, right posterior parietal cortex (PPC) with occipital regions, and the right superior posterior fissure with right Crus I and II. Connectivity strength between left M1 and right S1+2/superior parietal lobule increased the most in individuals that exhibited the least balance impairments. In sum, we observed HDBR-related changes in measures of brain structure, function, and network connectivity, which correlated with indices of sensorimotor function. Recovery was observed post HDBR but remained incomplete at 12 days post-HDBR. Preliminary findings from our parallel ongoing flight study will be compared and contrasted with bed rest results during this presentation.

26 citations


Journal ArticleDOI
TL;DR: Focusing on focal brain white matter changes and fluid shifts during 70 days of 6° HDBR found that gray matter increases in these regions were associated with less HDBR-induced balance impairment, suggesting adaptive structural neuroplasticity.
Abstract: The neural correlates of spaceflight-induced sensorimotor impairments are unknown. Head down-tilt bed rest (HDBR) serves as a microgravity analog because it mimics the headward fluid shift and axial body unloading of spaceflight. We investigated focal brain white matter (WM) changes and fluid shifts during 70 days of 6° HDBR in 16 subjects who were assessed pre (2x), during (3x), and post-HDBR (2x). Changes over time were compared to those in control subjects (n = 12) assessed four times over 90 days. Diffusion MRI was used to assess WM microstructure and fluid shifts. Free-Water Imaging was used to quantify distribution of intracranial extracellular free water (FW). Additionally, we tested whether WM and FW changes correlated with changes in functional mobility and balance measures. HDBR resulted in FW increases in fronto-temporal regions and decreases in posterior-parietal regions that largely recovered by two weeks post-HDBR. WM microstructure was unaffected by HDBR. FW decreases in the post-central gyrus and precuneus correlated negatively with balance changes. We previously reported that gray matter increases in these regions were associated with less HDBR-induced balance impairment, suggesting adaptive structural neuroplasticity. Future studies are warranted to determine causality and underlying mechanisms.

25 citations


Journal ArticleDOI
TL;DR: The results provide the first evidence of using pneumatically powered skull taps to elicit vestibular activity inside the MRI scanner, and reveal that skull taps elicit overlapping activation with auditory tone bursts in the canonical Vestibular cortical regions.
Abstract: The current study characterizes brain fMRI activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either a vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or an ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Research suggests that the skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for subjects than the high decibel tones required to elicit VEMPs. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of brain activity. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that pneumatically powered skull taps would elicit a similar pattern of brain activity as shown in previous studies. Our results provide the first evidence of using pneumatically powered skull taps to elicit vestibular activity inside the MRI scanner. A conjunction analysis revealed that skull taps elicit overlapping activation with auditory tone bursts in the canonical vestibular cortical regions. Further, our postural control assessments revealed that greater amplitude of brain activation in response to vestibular stimulation was associated with better balance control for both techniques. Additionally, we found that skull taps elicit more robust vestibular activity compared to auditory tone bursts, with less reported aversive effects, highlighting the utility of this approach for future clinical and basic science research.

22 citations


Journal ArticleDOI
TL;DR: Contrary to expectations from earlier studies of dual-task motor performance, bilateral subthalamic deep brain stimulation may assist in maintaining temporal and spatial gait performance under cognitive dual- task conditions.

13 citations


Journal ArticleDOI
TL;DR: The results provide partial support for the neurobiological theory of positive affect and highlight the importance of taking into account individual differences in working memory when examining the effects of positive mood induction.
Abstract: The neurobiological theory of positive affect proposes that positive mood states may benefit cognitive performance due to an increase of dopamine throughout the brain. However, the results of many positive affect studies are inconsistent; this may be due to individual differences. The relationship between dopamine and performance is not linear, but instead follows an inverted “U” shape. Given this, we hypothesized that individuals with high working memory capacity, a proxy measure for dopaminergic transmission, would not benefit from positive mood induction and in fact performance in dopamine-mediated tasks would decline. In contrast, we predicted that individuals with low working memory capacities would receive the most benefit after positive mood induction. Here, we explored the effect of positive affect on two dopamine-mediated tasks, an explicit serial reaction time sequence learning task and the stop signal task, predicting that an individual’s performance is modulated not only by working memory capacity, but also on the type of mood. Improvements in explicit sequence learning from pre- to post-positive mood induction were associated with working memory capacity; performance declined in individuals with higher working memory capacities following positive mood induction, but improved in individuals with lower working memory capacities. This was not the case for negative or neutral mood induction. Moreover, there was no relationship between the change in stop signal reaction time with any of the mood inductions and individual differences in working memory capacity. These results provide partial support for the neurobiological theory of positive affect and highlight the importance of taking into account individual differences in working memory when examining the effects of positive mood induction.

6 citations


02 May 2017
TL;DR: The spaceflight-related increase in Vestibular brain activations suggests that after a long-term spaceflight, more neural resources are required to process vestibular input.
Abstract: Previous studies have documented the effects of spaceflight on human physiology and behavior, including muscle mass, cardiovascular function, gait, balance, manual motor control, and cognitive performance. An understanding of spaceflight-related changes provides important information about human adaptive plasticity and facilitates future space travel. In the current study, we evaluated how brain activations associated with vestibular stimulation and dual tasking change as a function of spaceflight. Five crewmembers were included in this study. The durations of their spaceflight missions ranged from 3 months to 7 months. All of them completed at least two preflight assessments and at least one postflight assessment. The preflight sessions occurred, on average, about 198 days and 51 days before launch; the first postflight sessions were scheduled 5 days after return. Functional MRI was acquired during vestibular stimulation and dual tasking, at each session. Vestibular stimulation was administered via skull taps delivered by a pneumatic tactile pulse system placed over the lateral cheekbones. The magnitude of brain activations for vestibular stimulation increased with spaceflight relative to the preflight levels, in frontal areas and the precuneus. In addition, longer flight duration was associated with greater preflight-to-postflight increases in vestibular activation in frontal regions. Functional MRI for finger tapping was acquired during both single-task (finger tapping only) and dual-task (simultaneously performing finger tapping and a secondary counting task) conditions. Preflight-to-post-spaceflight decreases in brain activations for dual tasking were observed in the right postcentral cortex. An association between flight duration and amplitude of flight-related change in activations for dual tasking was observed in the parietal cortex. The spaceflight-related increase in vestibular brain activations suggests that after a long-term spaceflight, more neural resources are required to process vestibular input.

2 citations



23 Jan 2017
TL;DR: The data presented will focus on the behavioral measures that were collected pre-, in and post-flight including spatial cognition, processing speed, bimanual coordination, functional mobility, computerized dynamic posturography (CDP), and vibrotactile induced vestibular evoked myogenic potential (VEMP).
Abstract: Exposure to the microgravity environment during spaceflight missions impacts crewmembers' sensorimotor function. Bock et al. [1] studied the cognitive demands of human sensorimotor performance and dual tasking during long duration missions and concluded that both stress and scarcity of cognitive resources required for sensorimotor adaptation may be responsible for these deficits during spaceflight. Therefore, in consideration of the health and performance of crewmembers in- and post-flight, we are conducting this study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. The data presented will focus on the behavioral measures that were collected pre-, in- and post-flight including spatial cognition, processing speed, bimanual coordination, functional mobility, computerized dynamic posturography (CDP), and vibrotactile induced vestibular evoked myogenic potential (VEMP). To date, data were collected over the course of two pre-flight sessions and four post-flight sessions on five crewmembers (n=13) using the protocol described in Koppelmans et al. [2]. Balance control was assessed using CDP, with eyes closed and a sway-referenced base of support (Sensory Organization Test 5), with and without head movements in the pitch plane. Spatial working memory was assessed using Thurston's Card Rotation Test and a Mental Rotation Test. The Rod and Frame Test was performed to test visual dependence. The Digit Symbol Substitution Test was performed to evaluate processing speed, and the Purdue Pegboard Task was performed to test bimanual coordination. Vestibular function was assessed by eliciting ocular VEMP via a hand held striker on the side of the head as subjects lay supine on a gurney. Subjects also performed the Functional Mobility Test of walking through an obstacle course to assess rate of early motor learning. Data were also collected on the same crewmembers during three in-flight sessions on the International Space Station (ISS). In-flight, spatial working memory was assessed using the Mental Rotation Test, adaptation to visuo-motor transformation in manual control was assessed using the Sensorimotor Adaptation Test, and multi-tasking ability was assessed using the Dual Task Test. These three tests were performed in a strapped-in configuration mimicking a seated position - waist bungees pulled the crewmember toward the "floor" with feet secured in foot loops. The Mental Rotation Test was also performed in a free-floating configuration while the crewmember floated while holding on to the gamepad controller used to provide input that was secured to the equipment rack on the ISS. Preliminary findings from data collected to date, will be included in the presentation. Eventual comparison to results from supporting bed rest and longitudinal studies will enable the parsing out of the multiple mechanisms contributing to any observed spaceflight-induced sensorimotor and cognitive behavioral changes.