scispace - formally typeset
Search or ask a question

Showing papers by "Rainu Kaushal published in 2022"


Journal ArticleDOI
TL;DR: In this article , the authors leveraged the electronic health record data of two large cohorts, INSIGHT and One Florida+, from the national Patient-Centered Clinical Research Network to identify four reproducible post-acute sequelae of SARS-CoV-2 infection.
Abstract: Abstract The post-acute sequelae of SARS-CoV-2 infection (PASC) refers to a broad spectrum of symptoms and signs that are persistent, exacerbated or newly incident in the period after acute SARS-CoV-2 infection. Most studies have examined these conditions individually without providing evidence on co-occurring conditions. In this study, we leveraged the electronic health record data of two large cohorts, INSIGHT and OneFlorida+, from the national Patient-Centered Clinical Research Network. We created a development cohort from INSIGHT and a validation cohort from OneFlorida+ including 20,881 and 13,724 patients, respectively, who were SARS-CoV-2 infected, and we investigated their newly incident diagnoses 30–180 days after a documented SARS-CoV-2 infection. Through machine learning analysis of over 137 symptoms and conditions, we identified four reproducible PASC subphenotypes, dominated by cardiac and renal (including 33.75% and 25.43% of the patients in the development and validation cohorts); respiratory, sleep and anxiety (32.75% and 38.48%); musculoskeletal and nervous system (23.37% and 23.35%); and digestive and respiratory system (10.14% and 12.74%) sequelae. These subphenotypes were associated with distinct patient demographics, underlying conditions before SARS-CoV-2 infection and acute infection phase severity. Our study provides insights into the heterogeneity of PASC and may inform stratified decision-making in the management of PASC conditions.

36 citations


Journal ArticleDOI
01 Mar 2022-BMJ Open
TL;DR: The MIGHTy-Heart study is a pragmatic comparative effectiveness trial comparing two interventions demonstrated to improve the hospital to home transition for patients with HF: mobile integrated health (MIH) and transitions of care coordinator (TOCC).
Abstract: Introduction Nearly one-quarter of patients discharged from the hospital with heart failure (HF) are readmitted within 30 days, placing a significant burden on patients, families and health systems. The objective of the ‘Using Mobile Integrated Health and Telehealth to support transitions of care among patients with Heart failure’ (MIGHTy-Heart) study is to compare the effectiveness of two postdischarge interventions on healthcare utilisation, patient-reported outcomes and healthcare quality among patients with HF. Methods and analysis The MIGHTy-Heart study is a pragmatic comparative effectiveness trial comparing two interventions demonstrated to improve the hospital to home transition for patients with HF: mobile integrated health (MIH) and transitions of care coordinators (TOCC). The MIH intervention bundles home visits from a community paramedic (CP) with telehealth video visits by emergency medicine physicians to support the management of acute symptoms and postdischarge care coordination. The TOCC intervention consists of follow-up phone calls from a registered nurse within 48–72 hours of discharge to assess a patient’s clinical status, identify unmet clinical and social needs and reinforce patient education (eg, medication adherence and lifestyle changes). MIGHTy-Heart is enrolling and randomising (1:1) 2100 patients with HF who are discharged to home following a hospitalisation in two New York City (NY, USA) academic health systems. The coprimary study outcomes are all-cause 30-day hospital readmissions and quality of life measured with the Kansas City Cardiomyopathy Questionnaire 30 days after hospital discharge. The secondary endpoints are days at home, preventable emergency department visits, unplanned hospital admissions and patient-reported symptoms. Data sources for the study outcomes include patient surveys, electronic health records and claims submitted to Medicare and Medicaid. Ethics and dissemination All participants provide written or verbal informed consent prior to randomisation in English, Spanish, French, Mandarin or Russian. Study findings are being disseminated to scientific audiences through peer-reviewed publications and presentations at national and international conferences. This study has been approved by: Biomedical Research Alliance of New York (BRANY #20-08-329-380), Weill Cornell Medicine Institutional Review Board (20-08022605) and Mt. Sinai Institutional Review Board (20-01901). Trial registration number Clinicaltrials.gov, NCT04662541.

7 citations


Posted ContentDOI
13 Oct 2022-medRxiv
TL;DR: Future research is warranted to extend the analyses to other regions and examine more granular contextual and spatial characteristics to inform public health efforts to help patients recover from SARS-CoV-2 infection.
Abstract: Post-acute sequelae of SARS-CoV-2 infection (PASC) affects a wide range of organ systems among a large proportion of patients with SARS-CoV-2 infection. Although studies have identified a broad set of patient-level risk factors for PASC, little is known about the contextual and spatial risk factors for PASC. Using electronic health data of patients with COVID-19 from two large clinical research networks in New York City and Florida, we identified contextual and spatial risk factors from nearly 200 environmental characteristics for 23 PASC symptoms and conditions of eight organ systems. We conducted a two-phase environment-wide association study. In Phase 1, we ran a mixed effects logistic regression with 5-digit ZIP Code tabulation area (ZCTA5) random intercepts for each PASC outcome and each contextual and spatial factor, adjusting for a comprehensive set of patient-level confounders. In Phase 2, we ran a mixed effects logistic regression for each PASC outcome including all significant (false positive discovery adjusted p-value < 0.05) contextual and spatial characteristics identified from Phase I and adjusting for confounders. We identified air toxicants (e.g., methyl methacrylate), criteria air pollutants (e.g., sulfur dioxide), particulate matter (PM2.5) compositions (e.g., ammonium), neighborhood deprivation, and built environment (e.g., food access) that were associated with increased risk of PASC conditions related to nervous, respiratory, blood, circulatory, endocrine, and other organ systems. Specific contextual and spatial risk factors for each PASC condition and symptom were different across New York City area and Florida. Future research is warranted to extend the analyses to other regions and examine more granular contextual and spatial characteristics to inform public health efforts to help patients recover from SARS-CoV-2 infection.

3 citations


Posted ContentDOI
23 May 2022-medRxiv
TL;DR: This study leveraged EHRs from two large clinical research networks from the national Patient-Centered Clinical Research Network (PCORnet) and investigated patients' newly incident diagnoses that appeared within 30 to 180 days after a documented SARS-CoV-2 infection to provide novel insights into the heterogeneity of PASC.
Abstract: The post-acute sequelae of SARS-CoV-2 infection (PASC) refers to a broad spectrum of symptoms and signs that are persistent, exacerbated, or newly incident in the post-acute SARS-CoV-2 infection period of COVID-19 patients. Most studies have examined these conditions individually without providing concluding evidence on co-occurring conditions. To answer this question, this study leveraged electronic health records (EHRs) from two large clinical research networks from the national Patient-Centered Clinical Research Network (PCORnet) and investigated patients' newly incident diagnoses that appeared within 30 to 180 days after a documented SARS-CoV-2 infection. Through machine learning, we identified four reproducible subphenotypes of PASC dominated by blood and circulatory system, respiratory, musculoskeletal and nervous system, and digestive system problems, respectively. We also demonstrated that these subphenotypes were associated with distinct patterns of patient demographics, underlying conditions present prior to SARS-CoV-2 infection, acute infection phase severity, and use of new medications in the post-acute period. Our study provides novel insights into the heterogeneity of PASC and can inform stratified decision-making in the treatment of COVID-19 patients with PASC conditions.

3 citations


Posted ContentDOI
19 Dec 2022-medRxiv
TL;DR: In this paper , the authors compared the occurrence of specific COVID-associated symptoms and conditions as potential post-acute sequelae of SARS-CoV-2 infection.
Abstract: Background An increasing number of studies have described new and persistent symptoms and conditions as potential post-acute sequelae of SARS-CoV-2 infection (PASC). However, it remains unclear whether certain symptoms or conditions occur more frequently among persons with SARS-CoV-2 infection compared with those never infected with SARS-CoV-2. We compared the occurrence of specific COVID-associated symptoms and conditions as potential PASC 31 to 150 days following a SARS-CoV-2 test among adults ([≥]20 years) and children (<20 years) with positive and negative test results documented in the electronic health records (EHRs) of institutions participating in PCORnet, the National Patient-Centered Clinical Research Network. Methods and Findings This study included 3,091,580 adults (316,249 SARS-CoV-2 positive; 2,775,331 negative) and 675,643 children (62,131 positive; 613,512 negative) who had a SARS-CoV-2 laboratory test (nucleic acid amplification or rapid antigen) during March 1, 2020-May 31, 2021 documented in their EHR. We identified hospitalization status in the day prior through the 16 days following the SARS-CoV-2 test as a proxy for the severity of COVID-19. We used logistic regression to calculate the odds of receiving a diagnostic code for each symptom outcome and Cox proportional hazard models to calculate the risk of being newly diagnosed with each condition outcome, comparing those with a SARS-CoV-2 positive test to those with a negative test. After adjustment for baseline covariates, hospitalized adults and children with a positive test had increased odds of being diagnosed with [≥]1 symptom (adults: adjusted odds ratio[aOR], 1.17[95% CI, 1.11-1.23]; children: aOR, 1.18[95% CI, 1.08-1.28]) and shortness of breath (adults: aOR, 1.50[95% CI, 1.38-1.63]; children: aOR, 1.40[95% CI, 1.15-1.70]) 31-150 days following a SARS-CoV-2 test compared with hospitalized individuals with a negative test. Hospitalized adults with a positive test also had increased odds of being diagnosed with [≥]3 symptoms (aOR, 1.16[95% CI, 1.08 - 1.26]) and fatigue (aOR, 1.12[95% CI, 1.05 - 1.18]) compared with those testing negative. The risks of being newly diagnosed with type 1 or type 2 diabetes (aHR, 1.25[95% CI, 1.17-1.33]), hematologic disorders (aHR, 1.19[95% CI, 1.11-1.28]), and respiratory disease (aHR, 1.44[95% CI, 1.30-1.60]) were higher among hospitalized adults with a positive test compared with those with a negative test. Non-hospitalized adults with a positive SARS-CoV-2 test had higher odds of being diagnosed with fatigue (aOR, 1.11[95% CI, 1.05-1.16]) and shortness of breath (aOR, 1.22[95% CI, 1.15-1.29]), and had an increased risk (aHR, 1.12[95% CI, 1.02-1.23]) of being newly diagnosed with hematologic disorders (i.e., venous thromboembolism and pulmonary embolism) 31-150 days following SARS-CoV-2 test compared with those testing negative. The risk of being newly diagnosed with certain conditions, such as mental health conditions and neurological disorders, was lower among patients with a positive viral test relative to those with a negative viral test. Conclusions Patients with SARS-CoV-2 infection were at higher risk of being diagnosed with certain symptoms and conditions, particularly fatigue, respiratory symptoms, and hematological abnormalities, after acute infection. The risk was highest among adults hospitalized after SARS-CoV-2 infection.