scispace - formally typeset
Search or ask a question
Author

Ramesh Karri

Bio: Ramesh Karri is an academic researcher from New York University. The author has contributed to research in topics: Computer science & Overhead (computing). The author has an hindex of 54, co-authored 407 publications receiving 11199 citations. Previous affiliations of Ramesh Karri include New York University Abu Dhabi & University of Massachusetts Amherst.


Papers
More filters
Journal ArticleDOI
18 Jul 2014
TL;DR: This paper systematizes the current knowledge in this emerging field, including a classification of threat models, state-of-the-art defenses, and evaluation metrics for important hardware-based attacks.
Abstract: The multinational, distributed, and multistep nature of integrated circuit (IC) production supply chain has introduced hardware-based vulnerabilities. Existing literature in hardware security assumes ad hoc threat models, defenses, and metrics for evaluation, making it difficult to analyze and compare alternate solutions. This paper systematizes the current knowledge in this emerging field, including a classification of threat models, state-of-the-art defenses, and evaluation metrics for important hardware-based attacks.

514 citations

Proceedings ArticleDOI
03 Jun 2012
TL;DR: This work demonstrates that an attacker can decipher the obfuscated nctlist, in a time linear to the number of keys, by sensitizing the key values to the output, and develops techniques to fix this vulnerability and make obfuscation truly exponential in thenumber of inserted keys.
Abstract: Due to globalization of Integrated Circuit (IC) design flow, rogue elements in the supply chain can pirate ICs, overbuild ICs, and insert hardware trojans. EPIC [1] obfuscates the design by randomly inserting additional gates; only a correct key makes the design to produce correct outputs. We demonstrate that an attacker can decipher the obfuscated nctlist, in a time linear to the number of keys, by sensitizing the key values to the output. We then develop techniques to fix this vulnerability and make obfuscation truly exponential in the number of inserted keys.

489 citations

Journal ArticleDOI
TL;DR: A proposed new hardware Trojan taxonomy provides a first step in better understanding existing and potential threats.
Abstract: For reasons of economy, critical systems will inevitably depend on electronics made in untrusted factories. A proposed new hardware Trojan taxonomy provides a first step in better understanding existing and potential threats.

463 citations

Journal ArticleDOI
TL;DR: This work relates logic encryption to fault propagation analysis in IC testing and develop a fault analysis-based logic encryption technique that enables a designer to controllably corrupt the outputs.
Abstract: Globalization of the integrated circuit (IC) design industry is making it easy for rogue elements in the supply chain to pirate ICs, overbuild ICs, and insert hardware Trojans. Due to supply chain attacks, the IC industry is losing approximately $4 billion annually. One way to protect ICs from these attacks is to encrypt the design by inserting additional gates such that correct outputs are produced only when specific inputs are applied to these gates. The state-of-the-art logic encryption technique inserts gates randomly into the design, but does not necessarily ensure that wrong keys corrupt the outputs. Our technique ensures that wrong keys corrupt the outputs. We relate logic encryption to fault propagation analysis in IC testing and develop a fault analysis-based logic encryption technique. This technique enables a designer to controllably corrupt the outputs. Specifically, to maximize the ambiguity for an attacker, this technique targets 50% Hamming distance between the correct and wrong outputs (ideal case) when a wrong key is applied. Furthermore, this 50% Hamming distance target is achieved using a smaller number of additional gates when compared to random logic encryption.

420 citations

Proceedings ArticleDOI
04 Nov 2013
TL;DR: The feasibility of identifying the functionality of camouflaged gates is analyzed and techniques to make the dummy contact-based IC camouflaging technique resilient to reverse engineering are proposed.
Abstract: Camouflaging is a layout-level technique that hampers an attacker from reverse engineering by introducing, in one embodiment, dummy contacts into the layout. By using a mix of real and dummy contacts, one can camouflage a standard cell whose functionality can be one of many. If an attacker cannot resolve the functionality of a camouflaged gate, he/she will extract an incorrect netlist. In this paper, we analyze the feasibility of identifying the functionality of camouflaged gates. We also propose techniques to make the dummy contact-based IC camouflaging technique resilient to reverse engineering. Furthermore, we judiciously select gates to camouflage by using techniques which ensure that the outputs of the extracted netlist are controllably corrupted. The techniques leverage IC testing principles such as justification and sensitization. The proposed techniques are evaluated using ISCAS benchmark circuits and OpenSparc T1 microprocessor controllers.

385 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Book
01 Jan 2005

9,038 citations

01 Apr 1997
TL;DR: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity.
Abstract: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind. The emphasis is on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity. Topics covered includes an introduction to the concepts in cryptography, attacks against cryptographic systems, key use and handling, random bit generation, encryption modes, and message authentication codes. Recommendations on algorithms and further reading is given in the end of the paper. This paper should make the reader able to build, understand and evaluate system descriptions and designs based on the cryptographic components described in the paper.

2,188 citations