scispace - formally typeset
Search or ask a question

Showing papers by "Raymond H. Kwong published in 2003"


Journal ArticleDOI
TL;DR: A state-based approach for online passive fault diagnosis in systems modeled as finite-state automata is presented, and necessary and sufficient conditions for failure diagnosability are derived.
Abstract: A state-based approach for online passive fault diagnosis in systems modeled as finite-state automata is presented. In this framework, the system and the diagnoser (the fault detection system) do not have to be initialized at the same time. Furthermore, no information about the state or even the condition (failure status) of the system before the initiation of diagnosis is required. The design of the fault detection system, in the worst case, has exponential complexity. A model reduction scheme with polynomial time complexity is introduced to reduce the computational complexity of the design. Diagnosability of failures is studied, and necessary and sufficient conditions for failure diagnosability are derived.

347 citations


Journal ArticleDOI
TL;DR: An optimality theory for finite impulse response (FIR) filterbanks is introduced using a general algebraic point of view and the connection between several concepts, namely, principal component filterbanks, filterbanks with maximum coding gain, andfilterbanks with good scalability, is clearly revealed.
Abstract: We introduce an optimality theory for finite impulse response (FIR) filterbanks using a general algebraic point of view. We consider an admissible set /spl Lscr/ of FIR filterbanks and use scalability as the main notion based on which performance of the elements in /spl Lscr/are compared. We show that quantification of scalability leads naturally to a partial ordering on the set /spl Lscr/. An optimal solution is, therefore, represented by the greatest element in /spl Lscr/. It turns out that a greatest element does not necessarily exist in /spl Lscr/. Hence, one has to settle with one of the maximal elements that exist in /spl Lscr/. We provide a systematic way of finding a maximal element by embedding the partial ordering at hand in a total ordering. This is done by using a special class of order-preserving functions known as Schur-convex. There is, however, a price to pay for achieving a total ordering: there are infinitely many possible choices for Schur-convex functions, and the optimal solution specified in /spl Lscr/ depends on this (subjective) choice. An interesting aspect of the presented algebraic theory is that the connection between several concepts, namely, principal component filterbanks (PCFBs), filterbanks with maximum coding gain, and filterbanks with good scalability, is clearly revealed. We show that these are simply associated with different extremal elements of the partial ordering induced on /spl Lscr/ by scalability.

19 citations