scispace - formally typeset
Search or ask a question

Showing papers by "Reiner Hedderich published in 1995"


Journal ArticleDOI
TL;DR: The primary structures of the four subunits Fwd ABCD of the tungsten enzyme from Methanobacterium thermoautotrophicum which were determined by cloning and sequencing the encoding genes fwdABCD were found to contain sequence motifs characteristic for molybdopterin-dinucleotide-containing enzymes indicating that this subunit harbors the active site.
Abstract: Formylmethanofuran dehydrogenases are molybdenum or tungsten iron-sulfur proteins containing a pterin dinucleotide cofactor. We report here on the primary structures of the four subunits FwdABCD of the tungsten enzyme from Methanobacterium thermoautotrophicum which were determined by cloning and sequencing the encoding genes fwdABCD. FwdB was found to contain sequence motifs characteristic for molybdopterin-dinucleotide-containing enzymes indicating that this subunit harbors the active site. FwdA, FwdC and FwdD showed no significant sequence similarity to proteins in the data bases. Northern blot analysis revealed that the four fwd genes form a transcription unit together with three additional genes designated fwdE, fwdF and fwdG. A 17.8-kDa protein and an 8.6-kDa protein, both containing two [4Fe-4S] cluster binding motifs, were deduced from fwdE and fwdG. The open reading frame fwdF encodes a 38.6-kDa protein containing eight binding motifs for [4Fe-4S] clusters suggesting the gene product to be a novel polyferredoxin. All seven fwd genes were expressed in Escherichia coli yielding proteins of the expected size. The fwd operon was found to be located in a region of the M. thermoautotrophicum genome encoding molybdenum enzymes and proteins involved in molybdopterin biosynthesis.

69 citations


Journal ArticleDOI
TL;DR: The iron-dependent synthesis and biochemical properties of flavop protein A are reported, cloning and sequencing of the flavoprotein-A-encoding gene (fpaA) and the co-transcription of fpaA with two downstream open reading frames, one of which (rdxA) appears to encode a rubredoxin.
Abstract: Methanobacterium thermoautotrophicum strains contain a flavoprotein (flavoprotein A) that copurifies with the H2:heterodisulfide oxidoreductase complex. In this study, we report the iron-dependent synthesis and biochemical properties of flavoprotein A, cloning and sequencing of the flavoprotein-A-encoding gene (fpaA) and the co-transcription of fpaA with two downstream open reading frames, one of which (rdxA) appears to encode a rubredoxin. Native flavoprotein A has been shown to be a homodimer of a 45-kDa polypeptide that contains 1.3 mol FMN/45-kDa subunit but no iron or acid-labile sulfur. Catalytic amounts of the H2:heterodisulfide oxidoreductase complex or of the F420-reducing hydrogenase reduced flavoprotein A with H2, at specific rates of 0.3-0.4 U/mg enzyme, generating up to 70% flavin semiquinone before reduction to the flavin hydroquinone was observed. This intermediate accumulation of the semiquinone species had a kinetic rather than a thermodynamic basis, because the semiquinone form of flavoprotein A, generated by photoreduction, disproportionated quantitatively to the quinone and hydroquinone species. The midpoint potential of the quinone/hydroquinone couple was estimated to be 230 +/- 15 mV, at pH 7.6, versus the normal hydrogen electrode. Quantitation of Western blots demonstrated that flavoprotein A constituted approximately 1.5% of the soluble protein in cells grown in an iron-sufficient medium but that this increased to about 6% of the cellular protein when the iron the medium was depleted. The increase in the flavoprotein A content of cells grown under iron-limiting conditions was mirrored by a decrease in the content of the iron-rich polyferredoxin that also copurified with the H2:heterodisulfide oxidoreductase complex. The fpaA gene, cloned and sequenced from M. thermoautotrophicum strain delta H, encodes 404 amino acids in a sequence that has a C-terminal domain (approximately 130 amino acid residues) with features consistent with a flavodoxin structure. The remainder of flavoprotein A has sequences that are also predicted to be present in the N-terminal region of the orf14 gene product, which also appears to be an enlarged flavodoxin, encoded in the nif region of Rhodobacter capsulatus. Immediately downstream from fpaA, two open reading frames designated orfX and rdxA, have been located and shown by Northern-blot analyses to be co-transcribed with fpaA, although approximately 50% of fpaA-orfX-rdxA transcripts terminated or were cleaved within rdxA. Primer extension studies revealed that transcription of this transcriptional unit (the fpa operon) was initiated 32 nucleotides upstream of fpaA, at a site 25 nucleotides downstream from a sequence consistent with an archaeal TATA-box promoter element.(ABSTRACT TRUNCATED AT 400 WORDS)

31 citations