scispace - formally typeset
R

Rob Fergus

Researcher at New York University

Publications -  175
Citations -  103027

Rob Fergus is an academic researcher from New York University. The author has contributed to research in topics: Object (computer science) & Reinforcement learning. The author has an hindex of 82, co-authored 165 publications receiving 85690 citations. Previous affiliations of Rob Fergus include California Institute of Technology & University of Oxford.

Papers
More filters
Book ChapterDOI

Visualizing and Understanding Convolutional Networks

TL;DR: A novel visualization technique is introduced that gives insight into the function of intermediate feature layers and the operation of the classifier in large Convolutional Network models, used in a diagnostic role to find model architectures that outperform Krizhevsky et al on the ImageNet classification benchmark.
Proceedings Article

Intriguing properties of neural networks

TL;DR: It is found that there is no distinction between individual highlevel units and random linear combinations of high level units, according to various methods of unit analysis, and it is suggested that it is the space, rather than the individual units, that contains of the semantic information in the high layers of neural networks.
Proceedings ArticleDOI

Learning Spatiotemporal Features with 3D Convolutional Networks

TL;DR: The learned features, namely C3D (Convolutional 3D), with a simple linear classifier outperform state-of-the-art methods on 4 different benchmarks and are comparable with current best methods on the other 2 benchmarks.
Book ChapterDOI

Indoor segmentation and support inference from RGBD images

TL;DR: The goal is to parse typical, often messy, indoor scenes into floor, walls, supporting surfaces, and object regions, and to recover support relationships, to better understand how 3D cues can best inform a structured 3D interpretation.
Posted Content

Learning Spatiotemporal Features with 3D Convolutional Networks

TL;DR: In this article, the authors proposed a simple and effective approach for spatio-temporal feature learning using deep 3D convolutional networks (3D ConvNets) trained on a large scale supervised video dataset.