scispace - formally typeset
Search or ask a question

Showing papers by "Robert A. Balk published in 2014"


Journal ArticleDOI
TL;DR: This manuscript reviews the derivation, application, utilization, potential benefits, and speculation regarding the future of the SIRS definition.
Abstract: The concept of a systemic inflammatory response syndrome (SIRS) to describe the complex pathophysiologic response to an insult such as infection, trauma, burns, pancreatitis, or a variety of other injuries came from a 1991 consensus conference charged with the task of developing an easy-to-apply set of clinical parameters to aid in the early identification of potential candidates to enter into clinical trials to evaluate new treatments for sepsis. There was recognition that a diverse group of injuries produced a common inflammatory response in the host and provided attractive targets for new anti-inflammatory molecules designed to prevent further propagation and/or provide specific treatment. Effective application of these new anti-inflammatory strategies necessitated identification of early clinical markers that could be assessed in real-time and were likely to define a population of patients that would have a beneficial response to the targeted intervention. It was felt that early clinical manifestations might be more readily available to clinicians than more sophisticated and specific assays for inflammatory substances that were systemically released by the network of injurious inflammatory events. Therefore, the early definition of a systemic inflammatory response syndrome (SIRS) was built upon a foundation of basic clinical and laboratory abnormalities that were readily available in almost all clinical settings. With further refinement, it was hoped, that this definition would have a high degree of sensitivity, coupled with a reasonable degree of specificity. This manuscript reviews the derivation, application, utilization, potential benefits, and speculation regarding the future of the SIRS definition.

238 citations


Journal ArticleDOI
TL;DR: A computational model was developed and validated by comparing its predictions with results from animal and human experiments which involved applying acoustic excitation to the anterior chest, while detecting skin vibrations at the posterior chest, and predicted wave patterns inside the chest.
Abstract: Chest physical examination often includes performing chest percussion, which involves introducing sound stimulus to the chest wall and detecting an audible change. This approach relies on observations that underlying acoustic transmission, coupling, and resonance patterns can be altered by chest structure changes due to pathologies. More accurate detection and quantification of these acoustic alterations may provide further useful diagnostic information. To elucidate the physical processes involved, a realistic computer model of sound transmission in the chest is helpful. In the present study, a computational model was developed and validated by comparing its predictions with results from animal and human experiments which involved applying acoustic excitation to the anterior chest, while detecting skin vibrations at the posterior chest. To investigate the effect of pathology on sound transmission, the computational model was used to simulate the effects of pneumothorax on sounds introduced at the anterior chest and detected at the posterior. Model predictions and experimental results showed similar trends. The model also predicted wave patterns inside the chest, which may be used to assess results of elastography measurements. Future animal and human tests may expand the predictive power of the model to include acoustic behavior for a wider range of pulmonary conditions.

38 citations