scispace - formally typeset
Search or ask a question

Showing papers by "Roberto Car published in 2023"


Journal ArticleDOI
TL;DR: In this paper , the role of molecular rotations in the phase transitions between amorphous ices and shows how the unfreezing of rotational degrees of freedom generates a cascade effect that propagates over multiple length-scales.
Abstract: We model, via large-scale molecular dynamics simulations, the isothermal compression of low-density amorphous ice (LDA) to generate high-density amorphous ice (HDA) and the corresponding decompression extending to negative pressures to recover the low-density amorphous phase (LDAHDA). Both LDA and HDA are nearly hyperuniform and are characterized by a dynamical HBN, showing that amorphous ices are nonstatic materials and implying that nearly hyperuniformity can be accommodated in dynamical networks. In correspondence with both the LDA-to-HDA and the HDA-to-LDAHDA phase transitions, the (partial) activation of rotational degrees of freedom activates a cascade effect that induces a drastic change in the connectivity and a pervasive reorganization of the HBN topology which, ultimately, break the samples' hyperuniform character. Key to this effect is the rapid rate at which changes occur, and not their magnitude. The inspection of structural properties from the short- to the long-range shows that signatures of metastability are present at all length-scales, hence providing further solid evidence in support of the liquid-liquid critical point scenario. LDA and LDAHDA differ in terms of HBN and structural properties, implying that they are distinct low-density glasses. Our work unveils the role of molecular rotations in the phase transitions between amorphous ices and shows how the unfreezing of rotational degrees of freedom generates a cascade effect that propagates over multiple length-scales. Our findings greatly improve our basic understanding of water and amorphous ices and can potentially impact the field of molecular network-forming materials at large.

2 citations


Journal ArticleDOI
TL;DR: Using deep potential molecular dynamics (DPMD) simulations, the authors in this article characterized distinct aqueous interfaces introduced by four TiS2 terminations expected to be present as water intercalates into TiS 2, namely, Armchair, Zigzag, Zigzag-L, and Zigzag-R. The extent of water dissociation on each surface was evaluated using enhanced sampling.
Abstract: As a promising layered electrode material, TiS2-based capacitive deionization (CDI) devices for water desalination have attracted significant attention. However, TiS2/H2O interfacial features, potentially important for device optimization, remain unidentified. Using Deep Potential Molecular Dynamics (DPMD), we characterized distinct aqueous interfaces introduced by four TiS2 terminations expected to be present as water intercalates into TiS2, namely, Armchair, Zigzag, Zigzag-L, and Zigzag-R. First, we assessed important representative physical properties of the system to validate the deep potentials (DPs). DPMD simulations agree well with experiments and first-principles simulations, suggesting the DPs are accurate and reliable. Subsequent simulations of these TiS2/water interfaces revealed how TiS2 surface termination influences the structure of interfacial water. This effect is most evident in the first and second water layers close to the TiS2 surface, and more pronounced when spontaneous dissociative adsorption of water occurs. The extent of water dissociation on each surface was evaluated using enhanced sampling. Zigzag-L is the only interface where proton transfer from adsorbed water to TiS2 surface S atoms is thermodynamically and kinetically favored. The coexistence of surface four-fold-coordinated Ti (Ti4c) and one-fold-coordinated S (S1c) is found to be essential to making proton transfer feasible on the Zigzag-L surface. Furthermore, remaining unprotonated S1c atoms can act as good proton acceptors after water dissociation. Thus, TiS2 with Zigzag-L termination may be a surface to avoid in CDI device construction, given that pH fluctuations adversely affect performance. This work provides new understanding of TiS2/H2O interfacial features that could aid future design and optimization of TiS2-based CDI devices for water desalination.

1 citations


Peer ReviewDOI
19 Apr 2023
TL;DR: The DeePMD-kit as mentioned in this paper is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials (MLP) known as Deep Potential (DP) models.
Abstract: DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials (MLP) known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, Deep Potential - Range Correction (DPRc), Deep Potential Long Range (DPLR), GPU support for customized operators, model compression, non-von Neumann molecular dynamics (NVNMD), and improved usability, including documentation, compiled binary packages, graphical user interfaces (GUI), and application programming interfaces (API). This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, the article benchmarks the accuracy and efficiency of different models and discusses ongoing developments.

1 citations


08 May 2023
TL;DR: In this article , a deep neural network potential fitted to density functional theory data was used to estimate the thermal conductivity of water at extreme conditions, and the authors found that the thermal properties of water are weakly dependent on temperature and monotonically increase with pressure with an approximate square root behavior.
Abstract: Measuring the thermal conductivity ($\kappa$) of water at extreme conditions is a challenging task and few experimental data are available. We predict $\kappa$ for temperatures and pressures relevant to the conditions of the Earth mantle, between 1,000 and 2,000 K and up to 22 GPa. We employ close to equilibrium molecular dynamics simulations and a deep neural network potential fitted to density functional theory data. We then interpret our results by computing the equation of state of water on a fine grid of points and using a simple model for $\kappa$. We find that the thermal conductivity is weakly dependent on temperature and monotonically increases with pressure with an approximate square-root behavior. In addition we show how the increase of $\kappa$ at high pressure, relative to ambient conditions, is related to the corresponding increase in the sound velocity. Although the relationships between the thermal conductivity, pressure and sound velocity established here are not rigorous, they are sufficiently accurate to allow for a robust estimate of the thermal conductivity of water in a broad range of temperatures and pressures, where experiments are still difficult to perform.

16 Feb 2023
TL;DR: In this article , the authors explore the possibility of a liquid-liquid critical point in deeply supercooled water using molecular dynamics simulations with a purely-predictive machine learning model based on ab initio quantum-mechanical calculations.
Abstract: The possible existence of a liquid-liquid critical point in deeply supercooled water has been a subject of debate in part due to the challenges associated with providing definitive experimental evidence. Pioneering work by Mishima and Stanley [Nature 392, 164 (1998) and Phys. Rev. Lett. 85, 334 (2000)] sought to shed light on this problem by studying the melting curves of different ice polymorphs and their metastable continuation in the vicinity of the expected location of the liquid-liquid transition and its associated critical point. Based on the continuous or discontinuous changes in slope of the melting curves, Mishima suggested that the liquid-liquid critical point lies between the melting curves of ice III and ice V. Here, we explore this conjecture using molecular dynamics simulations with a purely-predictive machine learning model based on ab initio quantum-mechanical calculations. We study the melting curves of ices III, IV, V, VI, and XIII using this model and find that the melting lines of all the studied ice polymorphs are supercritical and do not intersect the liquid-liquid transition locus. We also find a pronounced, yet continuous, change in slope of the melting lines upon crossing of the locus of maximum compressibility of the liquid. Finally, we analyze critically the literature in light of our findings, and conclude that the scenario in which melting curves are supercritical is favored by the most recent computational and experimental evidence. Thus, although the preponderance of experimental and computational evidence is consistent with the existence of a second critical point in water, the behavior of the melting lines of ice polymorphs does not provide strong evidence in support of this viewpoint, according to our calculations.

11 Jun 2023
TL;DR: In this paper , the authors used molecular dynamics simulations to study a chiral four-site molecular model that exhibits a second-order symmetry-breaking phase transition from a supercritical racemic liquid, into subcritical D-rich and L-rich liquids.
Abstract: Understanding the condensed-phase behavior of chiral molecules is important in biology, as well as in a range of technological applications, such as the manufacture of pharmaceuticals. Here, we use molecular dynamics simulations to study a chiral four-site molecular model that exhibits a second-order symmetry-breaking phase transition from a supercritical racemic liquid, into subcritical D-rich and L-rich liquids. We determine the infinite-size critical temperature using the fourth-order Binder cumulant, and we show that the finite-size scaling behavior of the order parameter is compatible with the 3D Ising universality class. We also study the spontaneous D-rich to L-rich transition at a slightly subcritical temperature $T\approx0.985 T_c$ and our findings indicate that the free energy barrier for this transformation increases with system size as $N^{2/3}$ where $N$ is the number of molecules, consistent with a surface-dominated phenomenon. The critical behavior observed herein suggests a mechanism for chirality selection in which a liquid of chiral molecules spontaneously forms a phase enriched in one of the two enantiomers as the temperature is lowered below the critical point. Furthermore, the increasing free energy barrier with system size indicates that fluctuations between the L-rich and D-rich phases are suppressed as the size of the system increases, trapping it in one of the two enantiomerically-enriched phases. Such a process could provide the basis for an alternative explanation for the origin of biological homochirality. We also conjecture the possibility of observing nucleation at subcritical temperatures under the action of a suitable chiral external field.

Journal ArticleDOI
TL;DR: In this paper , the potential energy surface of the PBE-D3, BLYP-D-3, SCAN, and SCAN-rvv10 approximations of density functional theory has been investigated.
Abstract: In this work, we construct distinct first-principles-based machine-learning models of CO2, reproducing the potential energy surface of the PBE-D3, BLYP-D3, SCAN, and SCAN-rvv10 approximations of density functional theory. We employ the Deep Potential methodology to develop the models and consequently achieve a significant computational efficiency over ab initio molecular dynamics (AIMD) that allows for larger system sizes and time scales to be explored. Although our models are trained only with liquid-phase configurations, they are able to simulate a stable interfacial system and predict vapor-liquid equilibrium properties, in good agreement with results from the literature. Because of the computational efficiency of the models, we are also able to obtain transport properties, such as viscosity and diffusion coefficients. We find that the SCAN-based model presents a temperature shift in the position of the critical point, while the SCAN-rvv10-based model shows improvement but still exhibits a temperature shift that remains approximately constant for all properties investigated in this work. We find that the BLYP-D3-based model generally performs better for the liquid phase and vapor-liquid equilibrium properties, but the PBE-D3-based model is better suited for predicting transport properties.

Journal ArticleDOI
TL;DR: The formation of ice in the atmosphere affects precipitation and cloud properties, and plays a key role in the climate of our planet as mentioned in this paper , although ice can form directly from liquid liquid.
Abstract: The formation of ice in the atmosphere affects precipitation and cloud properties, and plays a key role in the climate of our planet. Although ice can form directly from liquid...