scispace - formally typeset
Search or ask a question

Showing papers by "Roger B. H. Tootell published in 1980"


Journal ArticleDOI
TL;DR: The results show that ground squirrels are maximally sensitive to lights flickering at a rate of about 18 Hz, and that the highest rates that are still discriminable are slightly above 60 Hz.
Abstract: We have investigated the visual sensitivity of the California ground squirrel (Speromphilus beecheyi) to spatial and temporal luminance patterns. Spatial contrast sensitivity functions were determined in behavioral discrimination experiments in which the stimuli were sinusoidally-modulated luminance gratings. These squirrels were found to be maximally sensitive to spatial frequencies of about 0.7 cycles/ degree (c/d), and they are unable to discriminate gratings whose frequencies exceed 4 c/d. Similar results were obtained in electrophysiological experiments when the visually evoked cortical potential (VECP) was recorded from anesthetized squirrels. A third experiment involved tests of the ability of ground squirrels to discriminate square-wave gratings of much higher luminance (340 cd/m2). The finest gratings which were discriminable at this luminance level did not exceed 3.9–4.3 c/d and, thus, we conclude that the maximal spatial resolution of the California ground squirrel is about 4 c/d (corresponding to a bar separation of 7.5′). In another behavioral experiment the abilities of ground squirrels to discriminate sinusoidally flickering lights (mean luminance = 3.4 cd/m2) was measured. The results show that ground squirrels are maximally sensitive to lights flickering at a rate of about 18 Hz, and that the highest rates that are still discriminable are slightly above 60 Hz.

31 citations


Journal ArticleDOI
TL;DR: Although about one‐third of the ERGs recorded from a large sample of California ground squirrels lack those characteristics which would indicate the presence of a viable scotopic signal, the retinas of all the squirrels appear to contain the same small population of rod photoreceptors.
Abstract: Ground squirrel retinas contain a relatively small complement of rods (5--10% of all photoreceptors) which are thought to provide the basis for a weak scotopic visual capacity. In a previous investigation of the California ground squirrel (Spermophilus beecheyi) involving the recording of a retinal gross potential, the electroretinogram (ERG), electrophysiological evidence for a viable scotopic signal could be obtained from some, but not all of the ground squirrels examined. To further pursue the possibility that there is a structural/functional discrepancy in the relationship between rod photoreceptors and scotopic vision in the ground squirrel, several experiments involving electrophysiological, behavioral, and anatomical observations have been conducted. We found that although about one-third of the ERGs recorded from a large sample of California ground squirrels lack those characteristics which would indicate the presence of a viable scotopic signal, the retinas of all the squirrels appear to contain the same small population of rod photoreceptors. Additional experiments on the golden-mantled ground squirrel (Spermophilus lateralis), including behavioral as well as ERG measurements and anatomical observations, lead to this same conclusion.

21 citations


Journal ArticleDOI
TL;DR: Evidence suggests, contrary to an earlier conclusion, that units showing spectrally-opponent response patterns in the ground squirrel visual system are not found only under abnormal physiological conditions of the animal.

16 citations