scispace - formally typeset
Search or ask a question

Showing papers by "Roger B. H. Tootell published in 2009"


Journal ArticleDOI
TL;DR: In this article, the authors used fMRI to map face-selective sites in both humans and macaques, based on equivalent stimuli in a quantitative topographic comparison, and found that the faceselective area exists in human anterior inferotemporal cortex, comprising the apparent homologue of the fMRI-defined anterior temporal face patch in macaques.
Abstract: Increasing evidence suggests that primate visual cortex has a specialized architecture for processing discrete object categories such as faces. Human fMRI studies have described a localized region in the fusiform gyrus [the fusiform face area (FFA)] that responds selectively to faces. In contrast, in nonhuman primates, electrophysiological and fMRI studies have instead revealed 2 apparently analogous regions of face representation: the posterior temporal face patch (PTFP) and the anterior temporal face patch (ATFP). An earlier study suggested that human FFA is homologous to the PTFP in macaque. However, in humans, no obvious homologue of the macaque ATFP has been demonstrated. Here, we used fMRI to map face-selective sites in both humans and macaques, based on equivalent stimuli in a quantitative topographic comparison. This fMRI evidence suggests that such a face-selective area exists in human anterior inferotemporal cortex, comprising the apparent homologue of the fMRI-defined ATFP in macaques.

257 citations


Journal ArticleDOI
TL;DR: FMRI results provide some novel observations and support the idea that representations of complex stimuli in IT cortex are organized into multiple hierarchical tiers, encompassing both semantic and physical properties.
Abstract: Increasing evidence suggests that the neural processes associated with identifying everyday stimuli include the classification of those stimuli into a limited number of semantic categories. How the neural representations of these stimuli are organized in the temporal lobe remains under debate. Here we used functional magnetic resonance imaging (fMRI) to identify correlates for three current hypotheses concerning object representations in the inferior temporal (IT) cortex of monkeys and humans: representations based on animacy, semantic categories, or visual features. Subjects were presented with blocked images of faces, body parts (animate stimuli), objects, and places (inanimate stimuli), and multiple overlapping contrasts were used to identify the voxels most selective for each category. Stimulus representations appeared to segregate according to semantic relationships. Discrete regions selective for animate and inanimate stimuli were found in both species. These regions could be further subdivided into regions selective for individual categories. Notably, face-selective regions were contiguous with body-part-selective regions, and object-selective regions were contiguous with place-selective regions. When category-selective regions in monkeys were tested with blocks of single exemplars, individual voxels showed preferences for visually dissimilar exemplars from the same category and voxels with similar preferences tended to cluster together. Our results provide some novel observations with respect to how stimulus representations are organized in IT cortex. In addition, they further support the idea that representations of complex stimuli in IT cortex are organized into multiple hierarchical tiers, encompassing both semantic and physical properties.

171 citations


Journal ArticleDOI
TL;DR: It is found that the vertical meridian of the visual field tends to be represented on gyri (convex folds), whereas the horizontal meridian is preferentially represented in sulci (concave folds), throughout visual cortex in both primate species, which suggests that the retinotopic maps may constrain the pattern of cortical folding during development.
Abstract: In humans and other Old World primates, much of visual cortex comprises a set of retinotopic maps, embedded in a cortical sheet with well known, identifiable folding patterns. However, the relationship between these two prominent cortical variables has not been comprehensively studied. Here, we quantitatively tested this relationship using functional and structural magnetic resonance imaging in monkeys and humans. We found that the vertical meridian of the visual field tends to be represented on gyri (convex folds), whereas the horizontal meridian is preferentially represented in sulci (concave folds), throughout visual cortex in both primate species. This relationship suggests that the retinotopic maps may constrain the pattern of cortical folding during development.

57 citations