scispace - formally typeset
Search or ask a question
Author

Sadaaki Miyamoto

Bio: Sadaaki Miyamoto is an academic researcher from University of Tsukuba. The author has contributed to research in topics: Cluster analysis & Fuzzy clustering. The author has an hindex of 26, co-authored 276 publications receiving 4717 citations. Previous affiliations of Sadaaki Miyamoto include Shibaura Institute of Technology.


Papers
More filters
Book
15 Apr 2008
TL;DR: It is believed that the methods of fuzzy c-means become complete by adding the entropy-based method to the method by Dunn and Bezdek, since one can observe natures of the both methods more deeply by contrasting these two.
Abstract: The main subject of this book is the fuzzy c-means proposed by Dunn and Bezdek and their variations including recent studies A main reason why we concentrate on fuzzy c-means is that most methodology and application studies in fuzzy clustering use fuzzy c-means, and hence fuzzy c-means should be considered to be a major technique of clustering in general, regardless whether one is interested in fuzzy methods or not Unlike most studies in fuzzy c-means, what we emphasize in this book is a family of algorithms using entropy or entropy-regularized methods which are less known, but we consider the entropy-based method to be another useful method of fuzzy c-means Throughout this book one of our intentions is to uncover theoretical and methodological differences between the Dunn and Bezdek traditional method and the entropy-based method We do note claim that the entropy-based method is better than the traditional method, but we believe that the methods of fuzzy c-means become complete by adding the entropy-based method to the method by Dunn and Bezdek, since we can observe natures of the both methods more deeply by contrasting these two

236 citations

Journal ArticleDOI
TL;DR: A fuzzy multiset model for information clustering is proposed with application to information retrieval on the World Wide Web, observing that a search engine retrieves multiple occurrences of the same subjects with possibly different degrees of relevance.
Abstract: A fuzzy multiset model for information clustering is proposed with application to information retrieval on the World Wide Web. Noting that a search engine retrieves multiple occurrences of the same subjects with possibly different degrees of relevance, we observe that fuzzy multisets provide an appropriate model of information retrieval on the WWW. Information clustering which means both term clustering and document clustering is considered. Three methods of the hard c-means, fuzzy c-means, and an agglomerative method using cluster centers are proposed. Two distances between fuzzy multisets and algorithms for calculating cluster centers are defined. Theoretical properties concerning the clustering algorithms are studied. Illustrative examples are given to show how the algorithms work.

116 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: It is proved that the envelope of the hesitant fuzzy sets is an intuitionistic fuzzy set, and it is proved also that the operations proposed are consistent with the ones of intuitionist fuzzy sets when applied to the envelope.
Abstract: Several extensions and generalizations of fuzzy sets have been introduced in the literature, for example, Atanassov's intuitionistic fuzzy sets, type 2 fuzzy sets, and fuzzy multisets. In this paper, we propose hesitant fuzzy sets. Although from a formal point of view, they can be seen as fuzzy multisets, we will show that their interpretation differs from the two existing approaches for fuzzy multisets. Because of this, together with their definition, we also introduce some basic operations. In addition, we also study their relationship with intuitionistic fuzzy sets. We prove that the envelope of the hesitant fuzzy sets is an intuitionistic fuzzy set. We prove also that the operations we propose are consistent with the ones of intuitionistic fuzzy sets when applied to the envelope of the hesitant fuzzy sets. © 2010 Wiley Periodicals, Inc.

2,232 citations

Dissertation
01 Jan 1975

2,119 citations

Book
10 Dec 1997

2,025 citations