scispace - formally typeset
Search or ask a question

Showing papers by "Säm Krucker published in 1998"


Journal ArticleDOI
TL;DR: In this article, the variations in the emission measure of the solar corona using EUV Imaging Telescope/Solar and Heliospheric Observatory observations of iron lines in a quiet region of the Sun were determined.
Abstract: We have determined the variations in the emission measure of the solar corona using EUV Imaging Telescope/Solar and Heliospheric Observatory observations of iron lines in a quiet region of the Sun. The emission measure is found to vary significantly in at least 85% of all the pixels within 42 minutes. The variations are interpreted as heating events that bring chromospheric material above the one million degree threshold of the observed lines and that cool the coronal plasma below that limit. A method to assess heating events has been developed. The thermal energy input by such microflares is calculated from the observed increases in emission measure and the derived temperature. Heating events have been found in the range from 8 ? 10 -->24 to 1.6 ? 10 -->26 ergs. The energy input by ?3 ? events of the emission measure increase the amounts to about 16% of the average radiated power of the coronal plasma in the quiet corona. The frequency distribution of microflares is an approximate power law of the form f(E)=f -->0E-?, with a power-law index ? between 2.3 and 2.6. Since the low-energy cutoff is due to sensitivity limitations and the power-law index is steeper than 2, these observations demonstrate the possibility that microflares dominate the energy input into the quiet corona. The observed power law would have to continue to about 3 ? 10 -->23 ergs in order to match the observed minimum heating requirement.

262 citations


Journal ArticleDOI
TL;DR: In this article, sensitive observations of the quiet Sun observed by EIT on the SOHO satellite in high-temperature iron-line emission originating in the corona are presented.
Abstract: Sensitive observations of the quiet Sun observed by EIT on the SOHO satellite in high-temperature iron-line emission originating in the corona are presented. The thermal radiation of the quiet corona is found to fluctutate significantly, even on the shortest time scale of 2 min and in the faintest pixels. The power spectrum of the emission measure time variations is approximately a power law with an exponent of 1.79±0.08 for the brightest pixels and 1.69±0.08 for the average and the faintest pixels. The more prominent enhancements are identified with previously reported X-ray network flares (Krucker et al., 1997) above the magnetic network of the quiet chromosphere. In coronal EUV iron lines they are amenable to detailed analysis suggesting that the brightenings are caused by additional plasma injected from below and heated to slightly higher temperature than the preexisting corona. Statistical investigations are consistent with the hypothesis that the weaker emission measure enhancements originate from the same parent population. The power input derived from the impulsive brightenings is linearly proportional to the radiative loss in the observed part of the corona. The absolute amount of impulsive input is model-dependent. It cannot be excluded that it can satisfy the total requirement for heating. These observations give strong evidence that a significant fraction of the heating in quiet coronal regions is impulsive.

65 citations