Author
Sanjit K. Mitra
Other affiliations: Kobe University, Cornell University, University of California, Berkeley ...read more
Bio: Sanjit K. Mitra is an academic researcher from University of California, Santa Barbara. The author has contributed to research in topics: Digital filter & Adaptive filter. The author has an hindex of 61, co-authored 517 publications receiving 17735 citations. Previous affiliations of Sanjit K. Mitra include Kobe University & Cornell University.
Papers published on a yearly basis
Papers
More filters
TL;DR: In this article, an image fusion scheme based on the wavelet transform is presented, where wavelet transforms of the input images are appropriately combined, and the new image is obtained by taking the inverse wavelet transformation of the fused wavelet coefficients.
Abstract: The goal of image fusion is to integrate complementary information from multisensor data such that the new images are more suitable for the purpose of human visual perception and computer-processing tasks such as segmentation, feature extraction, and object recognition. This paper presents an image fusion scheme which is based on the wavelet transform. The wavelet transforms of the input images are appropriately combined, and the new image is obtained by taking the inverse wavelet transform of the fused wavelet coefficients. An area-based maximum selection rule and a consistency verification step are used for feature selection. The proposed scheme performs better than the Laplacian pyramid-based methods due to the compactness, directional selectivity, and orthogonality of the wavelet transform. A performance measure using specially generated test images is suggested and is used in the evaluation of different fusion methods, and in comparing the merits of different wavelet transform kernels. Extensive experimental results including the fusion of multifocus images, Landsat and Spot images, Landsat and Seasat SAR images, IR and visible images, and MRI and PET images are presented in the paper.
1,532 citations
TL;DR: A new framework for removing impulse noise from images is presented in which the nature of the filtering operation is conditioned on a state variable defined as the output of a classifier that operates on the differences between the input pixel and the remaining rank-ordered pixels in a sliding window.
Abstract: A new framework for removing impulse noise from images is presented in which the nature of the filtering operation is conditioned on a state variable defined as the output of a classifier that operates on the differences between the input pixel and the remaining rank-ordered pixels in a sliding window. As part of this framework, several algorithms are examined, each of which is applicable to fixed and random-valued impulse noise models. First, a simple two-state approach is described in which the algorithm switches between the output of an identity filter and a rank-ordered mean (ROM) filter. The technique achieves an excellent tradeoff between noise suppression and detail preservation with little increase in computational complexity over the simple median filter. For a small additional cost in memory, this simple strategy is easily generalized into a multistate approach using weighted combinations of the identity and ROM filter in which the weighting coefficients can be optimized using image training data. Extensive simulations indicate that these methods perform significantly better in terms of noise suppression and detail preservation than a number of existing nonlinear techniques with as much as 40% impulse noise corruption. Moreover, the method can effectively restore images corrupted with Gaussian noise and mixed Gaussian and impulse noise. Finally, the method is shown to be extremely robust with respect to the training data and the percentage of impulse noise.
676 citations
TL;DR: Two contour-based methods which use region boundaries and other strong edges as matching primitives are presented, which have outperformed manual registration in terms of root mean square error at the control points.
Abstract: Image registration is concerned with the establishment of correspondence between images of the same scene. One challenging problem in this area is the registration of multispectral/multisensor images. In general, such images have different gray level characteristics, and simple techniques such as those based on area correlations cannot be applied directly. On the other hand, contours representing region boundaries are preserved in most cases. The authors present two contour-based methods which use region boundaries and other strong edges as matching primitives. The first contour matching algorithm is based on the chain-code correlation and other shape similarity criteria such as invariant moments. Closed contours and the salient segments along the open contours are matched separately. This method works well for image pairs in which the contour information is well preserved, such as the optical images from Landsat and Spot satellites. For the registration of the optical images with synthetic aperture radar (SAR) images, the authors propose an elastic contour matching scheme based on the active contour model. Using the contours from the optical image as the initial condition, accurate contour locations in the SAR image are obtained by applying the active contour model. Both contour matching methods are automatic and computationally quite efficient. Experimental results with various kinds of image data have verified the robustness of the algorithms, which have outperformed manual registration in terms of root mean square error at the control points. >
539 citations
TL;DR: In this article, a cascade of two sections is proposed for finite impulse response (FIR) digital filters, where the first section generates a sparse set of impulse response samples and the other section generates the remaining samples by using interpolation.
Abstract: A new approach to implement computationally efficient finite impulse response (FIR) digital filters is presented. The filter structure is a cascade of two sections. The first section generates a sparse set of impulse response samples and the other section generates the remaining samples by using interpolation. The method can be used to implement most practical FIR filters with significant savings in the number of arithmetic operations. Typically 1/2 to 1/8 of the number of multipliers and adders of conventional FIR filters are required in the implementation. The saving is achieved both in the linear phase and the non-linear phase cases. In addition, the new implementation gives smaller coefficient sensitivities and better roundoff noise properties than conventional implementations.
440 citations
13 Nov 1994
TL;DR: In the image fusion scheme presented in this paper, the wavelet transforms of the input images are appropriately combined, and the new image is obtained by taking the inverse wavelet transform of the fused wavelet coefficients.
Abstract: In the image fusion scheme presented in this paper, the wavelet transforms of the input images are appropriately combined, and the new image is obtained by taking the inverse wavelet transform of the fused wavelet coefficients. An area-based maximum selection rule and a consistency verification step are used for feature selection. A performance measure using specially generated test images is also suggested. >
422 citations
Cited by
More filters
TL;DR: A review of recent as well as classic image registration methods to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas.
Abstract: This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align two images (the reference and sensed images). The reviewed approaches are classified according to their nature (areabased and feature-based) and according to four basic steps of image registration procedure: feature detection, feature matching, mapping function design, and image transformation and resampling. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of image registration and outlook for the future research are discussed too. The major goal of the paper is to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas. q 2003 Elsevier B.V. All rights reserved.
6,842 citations
01 Apr 1975
TL;DR: This paper gives an exposition of linear prediction in the analysis of discrete signals as a linear combination of its past values and present and past values of a hypothetical input to a system whose output is the given signal.
Abstract: This paper gives an exposition of linear prediction in the analysis of discrete signals The signal is modeled as a linear combination of its past values and present and past values of a hypothetical input to a system whose output is the given signal In the frequency domain, this is equivalent to modeling the signal spectrum by a pole-zero spectrum The major part of the paper is devoted to all-pole models The model parameters are obtained by a least squares analysis in the time domain Two methods result, depending on whether the signal is assumed to be stationary or nonstationary The same results are then derived in the frequency domain The resulting spectral matching formulation allows for the modeling of selected portions of a spectrum, for arbitrary spectral shaping in the frequency domain, and for the modeling of continuous as well as discrete spectra This also leads to a discussion of the advantages and disadvantages of the least squares error criterion A spectral interpretation is given to the normalized minimum prediction error Applications of the normalized error are given, including the determination of an "optimal" number of poles The use of linear prediction in data compression is reviewed For purposes of transmission, particular attention is given to the quantization and encoding of the reflection (or partial correlation) coefficients Finally, a brief introduction to pole-zero modeling is given
4,206 citations
TL;DR: There is a strong analogy between several properties of the matrix and the higher-order tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, first-order perturbation effects, etc., are analyzed.
Abstract: We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higher-order tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, first-order perturbation effects, etc., are analyzed. We investigate how tensor symmetries affect the decomposition and propose a multilinear generalization of the symmetric eigenvalue decomposition for pair-wise symmetric tensors.
4,101 citations
01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher:
The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.
3,627 citations
TL;DR: A survey of recent publications concerning medical image registration techniques is presented, according to a model based on nine salient criteria, the main dichotomy of which is extrinsic versus intrinsic methods.
Abstract: The purpose of this paper is to present a survey of recent (published in 1993 or later) publications concerning medical image registration techniques. These publications will be classified according to a model based on nine salient criteria, the main dichotomy of which is extrinsic versus intrinsic methods. The statistics of the classification show definite trends in the evolving registration techniques, which will be discussed. At this moment, the bulk of interesting intrinsic methods is based on either segmented points or surfaces, or on techniques endeavouring to use the full information content of the images involved.
3,426 citations