scispace - formally typeset
Search or ask a question

Showing papers by "Santiago Ambrosio published in 2004"


Journal ArticleDOI
TL;DR: In this article, the authors showed that exposure of neuroendocrine lung carcinoma cells to BMP-2 leads to a rapid decline in steady-state levels of Mash1 protein and some neuron-specific markers.
Abstract: In neural development, bone morphogenetic proteins (BMPs) restrict neuronal differentiation, thereby promoting the maintenance of progenitor cells or even inducing astrocytogenesis. We report that exposure of neuroendocrine lung carcinoma cells to BMP-2 leads to a rapid decline in steady-state levels of Mash1 protein and some neuron-specific markers. BMP-2 induces a post-transcriptional decrease in Mash1 levels through enhanced degradation. We demonstrate that Mash1 protein stability is tightly regulated by the E47/Id1 expression ratio. Transient induction of Id1 by BMP-2 negatively correlates with Mash1 levels. Furthermore, an ectopic increase in Id1 levels is sufficient to induce degradation of either ectopic or endogenous Mash1, whereas expression of Mash1 in Id1-deficient cells or overexpression of E47 makes Mash1 levels refractory to the addition of BMP-2. Furthermore, we show that the E47/Id1 expression ratio also regulates CK2-mediated phosphorylation of Mash1 on Ser152, which increases interaction of Mash1–E47 heterodimers. We propose a novel mechanism in which the balance between Id and E protein levels regulates not only the transcriptional function but also protein stability of the neurogenic bHLH transcription factor Mash1.

105 citations


Journal ArticleDOI
TL;DR: Pull-down studies with members of the Rab protein family have shown that alpha-synuclein from Tg mice interacts with Rab3a, Rab5, and Rab8, which are important proteins involved in synaptic vesicle trafficking and exocytosis at the synapse, vesicles endocythesis, and trans-Golgi transport, respectively, and it can be suggested that these functions are impaired in TG mice.
Abstract: Mutation A30P in the alpha-synuclein gene is a cause of familial Parkinson disease. Transgenic mice expressing wild mouse and mutant human A30P alpha-synuclein, Tg5093 mice (Tg), show a progressive motor disorder characterized by tremor, rigidity, and dystonia, accompanied by accumulation of alpha-synuclein in the soma and neurites and by a conspicuous gliosis beginning in the hippocampal formation at the age of 7 to 8 months and spreading throughout the CNS. Impaired short-term changes in synaptic strength have also been documented in hippocampal slices from Tg mice. Alpha-synuclein aggregates of approximately 34 and 70 kDa, in addition to the band of 17 kDa, corresponding to the molecular weight of alpha-synuclein, were recovered in the PBS-soluble fraction of brain homogenates from Tg mice but not from brain samples from age-matched wildtype littermates. MPTP-treated Tg and wildtype mice produced alpha-synuclein aggregates in the PBS-, deoxycholate-, and SDS-soluble fractions. Aggregates of alpha-synuclein, although with different molecular weights, were also observed in rotenone-treated Tg and wildtype mice. Pull-down studies with members of the Rab protein family have shown that alpha-synuclein from Tg mice interacts with Rab3a, Rab5, and Rab8. This binding is not due to the amount of alpha-synuclein (levels of which are higher in Tg mice) and it is not dependent on the amount of Rab protein used in the assay. Rather, alpha-synuclein interactions with Rab proteins are due to mutant alpha-synuclein as demonstrated in Rab pull-down assays with recombinant of wildtype and mutant A30P human alpha-synuclein. Since Rab3a, Rab5, and Rab8 are important proteins involved in synaptic vesicle trafficking and exocytosis at the synapse, vesicle endocytosis, and trans-Golgi transport, respectively, it can be suggested that these functions are impaired in Tg mice. This rationale is consistent with previous data showing that short-term hippocampal synaptic plasticity is altered and that alpha-synuclein accumulates in the cytoplasm of neurons in Tg mice.

101 citations


Journal ArticleDOI
TL;DR: Analysis of alpha-synuclein interactions with rab3a and rabphilin by antibody arrays, immunoprecipitation and pull-down methods in the entorhinal cortex of control cases and in diffuse Lewy body disease cases confirms that exocytosis of neurotransmitters may be impaired in LB diseases.

87 citations


Journal Article
TL;DR: It is demonstrated that exposure of neuroendocrine lung carcinoma cells to BMP‐2 leads to a rapid decline in steady‐state levels of Mash1 protein and some neuron‐specific markers, and that Mash1protein stability is tightly regulated by the E47/Id1 expression ratio.
Abstract: In neural development, bone morphogenetic proteins (BMPs) restrict neuronal differentiation, thereby promoting the maintenance of progenitor cells or even inducing astrocytogenesis. We report that exposure of neuroendocrine lung carcinoma cells to BMP‐2 leads to a rapid decline in steady‐state levels of Mash1 protein and some neuron‐specific markers. BMP‐2 induces a post‐transcriptional decrease in Mash1 levels through enhanced degradation. We demonstrate that Mash1 protein stability is tightly regulated by the E47/Id1 expression ratio. Transient induction of Id1 by BMP‐2 negatively correlates with Mash1 levels. Furthermore, an ectopic increase in Id1 levels is sufficient to induce degradation of either ectopic or endogenous Mash1, whereas expression of Mash1 in Id1‐deficient cells or overexpression of E47 makes Mash1 levels refractory to the addition of BMP‐2. Furthermore, we show that the E47/Id1 expression ratio also regulates CK2‐mediated phosphorylation of Mash1 on Ser152, which increases interaction of Mash1–E47 heterodimers. We propose a novel mechanism in which the balance between Id and E protein levels regulates not only the transcriptional function but also protein stability of the neurogenic bHLH transcription factor Mash1.

9 citations