scispace - formally typeset
Search or ask a question

Showing papers by "Seongwon Seo published in 2018"


Journal ArticleDOI
TL;DR: Some essential elements when designing an animal experiment and conducting statistical analyses in animal nutritional studies are discussed and guidelines for submitting a manuscript to the Asian-Australasian Journal of Animal Sciences for consideration for publication are provided.
Abstract: Animal experiments are essential to the study of animal nutrition. Because of the large variations among individual animals and ethical and economic constraints, experimental designs and statistical analyses are particularly important in animal experiments. To increase the scientific validity of the results and maximize the knowledge gained from animal experiments, each experiment should be appropriately designed, and the observations need to be correctly analyzed and transparently reported. There are many experimental designs and statistical methods. This editorial does not aim to review and present particular experimental designs and statistical methods. Instead, we discuss some essential elements when designing an animal experiment and conducting statistical analyses in animal nutritional studies and provide guidelines for submitting a manuscript to the Asian-Australasian Journal of Animal Sciences for consideration for publication.

43 citations


Journal ArticleDOI
TL;DR: DNA methylation was related to cell development, cell-cell communication, cellular integrity and transport, and nutrient metabolism, and Nutritional and environmental management may have a significant impact on the variation in DNA methylation of porcine LDM.
Abstract: OBJECTIVE DNA methylation plays a major role in regulating the expression of genes related to traits of economic interest (e.g., weight gain) in livestock animals. This study characterized and investigated the functional inferences of genome-wide DNA methylome in the loin (longissimus dorsi) muscle (LDM) of swine. METHODS A total of 8.99 Gb methylated DNA immunoprecipitation sequence data were obtained from LDM samples of eight Duroc pigs (four pairs of littermates). The reference pig genome was annotated with 78.5% of the raw reads. A total of 33,506 putative methylated regions (PMR) were identified from methylated regions that overlapped at least two samples. RESULTS Of these, only 3.1% were commonly observed in all eight samples. DNA methylation patterns between two littermates were as diverse as between unrelated individuals (p = 0.47), indicating that maternal genetic effects have little influence on the variation in DNA methylation of porcine LDM. The highest density of PMR was observed on chromosome 10. A major proportion (47.7%) of PMR was present in the repeat regions, followed by introns (21.5%). The highest conservation of PMR was found in CpG islands (12.1%). These results show an important role for DNA methylation in species- and tissue-specific regulation of gene expression. PMR were also significantly related to muscular cell development, cell-cell communication, cellular integrity and transport, and nutrient metabolism. CONCLUSION This study indicated the biased distribution and functional role of DNA methylation in gene expression of porcine LDM. DNA methylation was related to cell development, cell-cell communication, cellular integrity and transport, and nutrient metabolism (e.g., insulin signaling pathways). Nutritional and environmental management may have a significant impact on the variation in DNA methylation of porcine LDM.

5 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effects of dietary hydrolysable tannin on growth performance and methane emissions of Hanwoo beef cows, and the results showed that the use of hydrolastic tannins had no effect (p > 0.05) on body weight, average daily gain, dry matter intake, and feed conversion ratio.
Abstract: The objective of this study was to investigate the effects of dietary hydrolysable tannin on growth performance and methane emissions of Hanwoo beef cows. Fifteen cows participated in a seven-week experiment. The cows were stratified by initial methane emissions and assigned to one of two treatments: Control and tannin supplementation. Commercial hydrolysable tannin was top-dressed to a concentrate mix at 3 g/kg based on the dry matter. Enteric methane production was measured for 4 consecutive days at 1 week before and 1, 3 and 7 weeks after the initiation of the experiment using a laser methane detector. The feed intake was measured daily during the methane measurement periods and an additional two days prior to each measurement. The body weight of the cows was measured every 4 weeks. Hydrolysable tannin had no effect (p > 0.05) on body weight, average daily gain, dry matter intake (DMI) and feed conversion ratio. After one week, the methane emission of the tannin supplementation group was 3.66 ppm-m / kg DMI, which was about 3.4% lower (p = 0.078) than that of the control group; however, this tendency disappeared at 3 weeks after the start of the experiment (p > 0.05). The results of this study show that hydrolysable tannin supplementation can reduce enteric methane emissions for a limited period in Hanwoo beef cows. More research, however, is needed to determine the optimal level of hydrolysable tannin supplementation to reduce enteric methane emissions for a longer period without adversely affecting the animal performance of Hanwoo beef cattle.

1 citations