scispace - formally typeset
Search or ask a question

Showing papers by "Simon Young published in 2012"


Journal ArticleDOI
TL;DR: The protocol for one such model, the rat calvarial defect, is described, which allows for evaluation of biomaterials and bone tissue engineering approaches within a reproducible, non-load-bearing orthotopic site.
Abstract: Animal models that are reliably reproducible, appropriate analogs to the clinical condition they are used to investigate, and that offer minimal morbidity and periprocedural mortality to the subject, are the keystone to the preclinical development of translational technologies. For bone tissue engineering, a number of small animal models exist. Here we describe the protocol for one such model, the rat calvarial defect. This versatile model allows for evaluation of biomaterials and bone tissue engineering approaches within a reproducible, non-load-bearing orthotopic site. Crucial steps for ensuring appropriate experimental control and troubleshooting tips learned through extensive experience with this model are provided. The surgical procedure itself takes ∼30 min to complete, with ∼2 h of perioperative care, and tissue collection is generally performed 4-12 weeks postoperatively. Several analytical techniques are presented, which evaluate the cellular and extracellular matrix components, functionality and mineralization, including histological, mechanical and radiographic methods.

497 citations


Journal ArticleDOI
TL;DR: The potential of porous polymethylmethacrylate implants formed in situ for space maintenance in the craniofacial complex is demonstrated, which may have implications in the potential delivery of therapeutic drugs to prime the wound site for a definitive bone repair.
Abstract: Reconstruction of composite defects involving bone and soft tissue presents a significant clinical challenge. In the craniofacial complex, reconstruction of the soft and hard tissues is critical for both functional and aesthetic outcomes. Constructs for space maintenance provide a template for soft tissue regeneration, priming the wound bed for a definitive repair of the bone tissue with greater success. However, materials used clinically for space maintenance are subject to poor soft tissue integration, which can result in wound dehiscence. Porous materials in space maintenance applications have been previously shown to support soft tissue integration and to allow for drug release from the implant to further prepare the wound bed for definitive repair. This study evaluated solid and low porosity (16.9% ± 4.1%) polymethylmethacrylate space maintainers fabricated intraoperatively and implanted in a composite rabbit mandibular defect model for 12 weeks. The data analyses showed no difference in the solid and porous groups both histologically, evaluating the inflammatory response at the interface and within the pores of the implants, and grossly, observing the healing of the soft tissue defect over the implant. These results demonstrate the potential of porous polymethylmethacrylate implants formed in situ for space maintenance in the craniofacial complex, which may have implications in the potential delivery of therapeutic drugs to prime the wound site for a definitive bone repair.

24 citations