Author
Soheil Soleimani
Bio: Soheil Soleimani is an academic researcher from Florida International University. The author has contributed to research in topics: Natural convection & Heat transfer. The author has an hindex of 26, co-authored 51 publications receiving 3203 citations.
Papers
More filters
TL;DR: In this article, the effect of magnetohydrodynamic effect on natural convection heat transfer of Cu-water nanofluid in an enclosure with hot elliptic cylinder is investigated.
Abstract: In this study magnetohydrodynamic effect on natural convection heat transfer of Cu–water nanofluid in an enclosure with hot elliptic cylinder is investigated. The governing equations of fluid motion and heat transfer in their vorticity stream function form are used to simulate the nanofluid flow and heat transfer. Control Volume based Finite Element Method (CVFEM) is applied to solve these equations. The effective thermal conductivity and viscosity of nanofluid are calculated using the Maxwell–Garnetts (MG) and Brinkman models, respectively. The calculations are performed for different governing parameters such as the Hartmann number, Rayleigh number, nanoparticle volume fraction and inclined angle of inner cylinder. Also a correlation of average Nusselt number corresponding to active parameters is presented. The results indicate that Nusselt number is an increasing function of nanoparticle volume fraction, Rayleigh numbers and inclination angle while it is a decreasing function of Hartmann number. Also it can be found that increasing Rayleigh number leads to decrease heat transfer enhancement while opposite trend is observed with augment of Hartmann number.
253 citations
TL;DR: In this paper, a semi-annulus enclosure filled with nanofluid is used for natural convection heat transfer in a control volume based finite element method (CVFEM).
Abstract: To investigate natural convection heat transfer in a semi-annulus enclosure filled with nanofluid, the Control Volume based Finite Element Method (CVFEM) is used. The fluid in the enclosure is Cu–water nanofluid. The inner and outer semi circular walls are maintained at constant temperatures while the two other walls are thermally insulated. The Navier Stokes equations in their vorticity-stream function form are used to simulate the flow pattern and isotherms. The numerical investigation is carried out for different governing parameters namely; the Rayleigh number, nanoparticle volume fraction and the angle of turn for the enclosure. The effective thermal conductivity and viscosity of nanofluid are calculated using the Maxwell–Garnetts (MG) and Brinkman models, respectively. The results reveal that there is an optimum angle of turn in which the average Nusselt number is maximum for each Rayleigh number. Moreover, the angle of turn has an important effect on the streamlines, isotherms and maximum or minimum values of local Nusselt number.
237 citations
TL;DR: In this paper, the effect of a magnetic field on natural convection in a half-annulus enclosure with one wall under constant heat flux using control volume based finite element method was investigated.
Abstract: In this paper, the effect of a magnetic field on natural convection in a half-annulus enclosure with one wall under constant heat flux using control volume based finite element method. The fluid in the enclosure is a water-based nanofluid containing Cu nanoparticles. The effective thermal conductivity and viscosity of nanofluid are calculated using the Maxwell–Garnetts (MG) and Brinkman models, respectively. Numerical simulations were performed for different governing parameters namely the Hartmann number, Rayleigh number and inclination angle of enclosure. The results indicate that Hartmann number and the inclination angle of the enclosure can be control parameters at different Rayleigh number. In presence of magnetic field velocity field retarded and hence convection and Nusselt number decreases.
223 citations
TL;DR: In this article, the authors used the control volume based finite element method (CVFEM) to simulate the fluid flow and heat transfer of Cu-water nanofluid in the presence of a horizontal magnetic field.
Abstract: In this study natural convection heat transfer of Cu–water nanofluid in a cold outer circular enclosure containing a hot inner sinusoidal circular cylinder in the presence of horizontal magnetic field is investigated numerically using the Control Volume based Finite Element Method (CVFEM). Both circular enclosure and inner cylinder are maintained at constant temperature. The governing equations of fluid motion and heat transfer in their vorticity stream function form are used to simulate the fluid flow and heat transfer. The effective thermal conductivity and viscosity of nanofluid are calculated using the Maxwell–Garnetts (MG) and Brinkman models, respectively. The calculations were performed for different governing parameters such as the Hartmann number, Rayleigh number, values of the number of undulations of the inner cylinder and nanoparticle volume fraction. The results indicate that in the absence of magnetic field, enhancement ratio decreases as Rayleigh number increases while an opposite trend is observed in the presence of magnetic field. Also it is found that the average Nusselt number is an increasing function of nanoparticle volume fraction, the number of undulations and Rayleigh numbers while it is a decreasing function of Hartmann number.
216 citations
TL;DR: In this paper, the effect of Hartmann number, buoyancy ratio number, and Lewis number on convection heat transfer in an enclosure filled with nanofluid is investigated, where the Navier Stokes equations in their vorticity-stream function form are used to simulate the flow pattern, isotherms and concentration.
Abstract: In this study MHD effect on natural convection heat transfer in an enclosure filled with nanofluid is investigated. The transport equations used in the analysis took into account the effect of Brownian motion and thermophoresis parameters. The Navier Stokes equations in their vorticity-stream function form are used to simulate the flow pattern, isotherms and concentration. The governing equations are solved via Control Volume based Finite Element Method. The inner and outer circular walls are maintained at constant temperatures while two other walls are thermally insulated. The heat transfer between cold and hot regions of the enclosure cannot be well understood by using isotherm patterns so heatline visualization technique is used to find the direction and intensity of heat transfer in a domain. Effect of Hartmann number (Ha = 0, 30, 60 and 100), buoyancy ratio number (Nr = 0.1–4) and Lewis number (Le = 2, 4, 6 and 8) on streamline, isotherm, isoconcentration and heatline are examined. Also a correlation for Nusselt number corresponding to active parameters is presented. The results indicate that Nusselt number is an increasing function of buoyancy ratio number but it is a decreasing function of Lewis number and Hartmann number. Also it can be concluded that as buoyancy ratio number increases the effects of other active parameters are more pronounced.
213 citations
Cited by
More filters
TL;DR: In this paper, the development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed.
Abstract: Fujishima and Honda (1972) demonstrated the potential of titanium dioxide (TiO2) semiconductor materials to split water into hydrogen and oxygen in a photo-electrochemical cell. Their work triggered the development of semiconductor photocatalysis for a wide range of environmental and energy applications. One of the most significant scientific and commercial advances to date has been the development of visible light active (VLA) TiO2 photocatalytic materials. In this review, a background on TiO2 structure, properties and electronic properties in photocatalysis is presented. The development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed. Emphasis is given to the origin of visible light absorption and the reactive oxygen species generated, deduced by physicochemical and photoelectrochemical methods. Various applications of VLA TiO2, in terms of environmental remediation and in particular water treatment, disinfection and air purification, are illustrated. Comprehensive studies on the photocatalytic degradation of contaminants of emerging concern, including endocrine disrupting compounds, pharmaceuticals, pesticides, cyanotoxins and volatile organic compounds, with VLA TiO2 are discussed and compared to conventional UV-activated TiO2 nanomaterials. Recent advances in bacterial disinfection using VLA TiO2 are also reviewed. Issues concerning test protocols for real visible light activity and photocatalytic efficiencies with different light sources have been highlighted.
3,305 citations
TL;DR: In this paper, the effect of thermal radiation on magnetohydrodynamics nanofluid flow between two horizontal rotating plates is studied and the significant effects of Brownian motion and thermophoresis have been included in the model of Nanofluide.
Abstract: In this study, effect of thermal radiation on magnetohydrodynamics nanofluid flow between two horizontal rotating plates is studied. The significant effects of Brownian motion and thermophoresis have been included in the model of nanofluid. By using the appropriate transformation for the velocity, temperature and concentration, the basic equations governing the flow, heat and mass transfer are reduced to a set of ordinary differential equations. These equations, subjected to the associated boundary conditions are solved numerically using the fourth-order Runge–Kutta method. The effects of Reynolds number, magnetic parameter, rotation parameter, Schmidt number, thermophoretic parameter, Brownian parameter and radiation parameter on heat and mass characteristics are examined. Results show that Nusselt number has direct relationship with radiation parameter and Reynolds number while it has reverse relationship with other active parameters. It can also be found that concentration boundary layer thickness decreases with the increase of radiation parameter.
700 citations
TL;DR: In this paper, the effects of Brownian motion on the effective viscosity and thermal conductivity of nanofluid were investigated. And the results were presented graphically in terms of streamlines, isotherms and isokinetic energy.
Abstract: In this paper magnetohydrodynamics nanofluid hydrothermal treatment in a cubic cavity heated from below is presented. The mathematical model consists of continuity and the momentum equations, while a new model is proposed to see the effects Brownian motion on the effective viscosity and thermal conductivity of nanofluid. The Lattice Boltzmann method is utilized to simulate three dimensional problems. The Koo–Kleinstreuer–Li correlation is also taken into account. Numerical calculation is made for different values of Hartmann number, nanoparticle volume fraction and Rayleigh number. The results are presented graphically in terms of streamlines, isotherms and isokinetic energy as well as Nusselt number. It is observed that the applying magnetic field results in a force opposite to the flow direction that leads to drag the flow and then reduces the convection currents by reducing the velocities. Also it can be concluded that Nusselt number is an increasing function of Rayleigh number and nanofluid volume fraction while it is a decreasing function of Hartmann number.
556 citations
TL;DR: In this article, the effect of thermal radiation on Al2O3-water nanofluid flow and heat transfer in an enclosure with a constant flux heating element was explored.
Abstract: This article explores the effect of thermal radiation on Al2O3–water nanofluid flow and heat transfer in an enclosure with a constant flux heating element. KKL (Koo–Kleinstreuer–Li) correlation is used for simulating effective thermal conductivity and viscosity of nanofluid. The governing equations are solved via control volume based finite element method. The effects of Rayleigh number, Hartman number, viscous dissipation parameter, radiation parameter and volume fraction of nanoparticle on the flow and heat transfer characteristics have been examined. Results show that enhancement in heat transfer has direct relationship with Hartman number, viscous dissipation parameter and radiation parameter but it has reverse relationship for Rayleigh number. It is also observed that Nusselt number is an increasing function of Rayleigh number, volume fraction of nanoparticle and radiation parameter while it is a decreasing function of viscous dissipation parameter and Hartman number.
398 citations