scispace - formally typeset
Search or ask a question

Showing papers by "Stefan Hohmann published in 2021"


Journal ArticleDOI
01 Sep 2021-Methods
TL;DR: It is demonstrated that rapid exposure to hydrogen peroxide causes Fps1 degradation and shed new light on aspects of architecture and dynamics of glycerol-permeable plasma membrane channels.

16 citations


Journal ArticleDOI
TL;DR: In this article, a hybrid model combining a Boolean module, describing the main pathways of glucose and nitrogen signaling, and an enzyme-constrained model accounting for the central carbon metabolism of Saccharomyces cerevisiae, using a regulatory network as a link.
Abstract: The interplay between nutrient-induced signaling and metabolism plays an important role in maintaining homeostasis and its malfunction has been implicated in many different human diseases such as obesity, type 2 diabetes, cancer, and neurological disorders. Therefore, unraveling the role of nutrients as signaling molecules and metabolites together with their interconnectivity may provide a deeper understanding of how these conditions occur. Both signaling and metabolism have been extensively studied using various systems biology approaches. However, they are mainly studied individually and in addition, current models lack both the complexity of the dynamics and the effects of the crosstalk in the signaling system. To gain a better understanding of the interconnectivity between nutrient signaling and metabolism in yeast cells, we developed a hybrid model, combining a Boolean module, describing the main pathways of glucose and nitrogen signaling, and an enzyme-constrained model accounting for the central carbon metabolism of Saccharomyces cerevisiae, using a regulatory network as a link. The resulting hybrid model was able to capture a diverse utalization of isoenzymes and to our knowledge outperforms constraint-based models in the prediction of individual enzymes for both respiratory and mixed metabolism. The model showed that during fermentation, enzyme utilization has a major contribution in governing protein allocation, while in low glucose conditions robustness and control are prioritized. In addition, the model was capable of reproducing the regulatory effects that are associated with the Crabtree effect and glucose repression, as well as regulatory effects associated with lifespan increase during caloric restriction. Overall, we show that our hybrid model provides a comprehensive framework for the study of the non-trivial effects of the interplay between signaling and metabolism, suggesting connections between the Snf1 signaling pathways and processes that have been related to chronological lifespan of yeast cells.

14 citations


Posted ContentDOI
14 Jun 2021-bioRxiv
TL;DR: In this paper, the spatial dynamics of Snf1 and Mig1 and how they are controlled by concentrations of hexose sugars were explored and it was shown that inactivation of SNf1 has a more pronounced effect on the localization of Mig1 than on the phosphorylation of SNF1.
Abstract: AMPK/SNF1 is the master regulator of energy homeostasis in eukaryotic cells and has a key role in glucose de-repression. If glucose becomes depleted, Snf1 is phosphorylated and activated. Activation of Snf1 is required but is not sufficient for mediating glucose de-repression indicating a second glucose-regulated step that adjusts the Snf1 pathway. To elucidate this regulation, we further explore the spatial dynamics of Snf1 and Mig1 and how they are controlled by concentrations of hexose sugars. We utilize fluorescence recovery after photobleaching (FRAP) to study the movement of Snf1 and how it responds to external glucose concentrations. We show that the Snf1 pathway reacts both to the presence and to the absolute concentration of glucose. Furthermore, we identify a negative feedback loop regulating Snf1 activity. We also show that Mig1 localization correlates with the Snf1 phosphorylation pattern and not with the Mig1 phosphorylation pattern, suggesting that inactivation of Snf1 has a more pronounced effect on the localization of Mig1 than on the phosphorylation of Mig1. Our data offer insight into the true complexity of regulation of this central signaling pathway by one signal (glucose depletion) interpreted by the cell in different ways.