scispace - formally typeset
Search or ask a question

Showing papers by "Stephanie Hansen published in 2023"


Journal ArticleDOI
TL;DR: In this paper , the authors investigated the energy coupling for an electron density of 11.5% critical and for applied field strengths up to 24 T at both densities, where a Hall parameter of 0.5 is expected to reduce electron thermal conduction across the field lines by a factor of 4-5 for the conditions of these experiments.
Abstract: Laser propagation experiments using four beams of the National Ignition Facility to deliver up to 35 kJ of laser energy at 351 nm laser wavelength to heat magnetized liner inertial fusion-scale (1 cm-long), hydrocarbon-filled gas pipe targets to ∼keV electron temperatures have demonstrated energy coupling >20 kJ with essentially no backscatter in 15% critical electron density gas fills with 0–19 T applied axial magnetic fields. The energy coupling is also investigated for an electron density of 11.5% critical and for applied field strengths up to 24 T at both densities. This spans a range of Hall parameters 0 [Formula: see text]2, where a Hall parameter of 0.5 is expected to reduce electron thermal conduction across the field lines by a factor of 4–5 for the conditions of these experiments. At sufficiently high applied field strength (and therefore Hall parameter), the measured laser propagation speed through the targets increases in the measurements, consistent with reduced perpendicular electron thermal transport; this reduces the coupled energy to the target once the laser burns through the gas pipe. The results compare well with a 1D analytic propagation model for inverse Bremsstrahlung absorption.

4 citations


Journal ArticleDOI
TL;DR: In this article , a simple modification to the bound-state occupation factor of a DFT-based average-atom model was proposed to capture essential non-LTE effects in plasmas, including autoionization and dielectronic recombination.
Abstract: Modern density functional theory (DFT) is a powerful tool for accurately predicting self-consistent material properties such as equations of state, transport coefficients and opacities in high energy density plasmas, but it is generally restricted to conditions of local thermodynamic equilibrium (LTE) and produces only averaged electronic states instead of detailed configurations. We propose a simple modification to the bound-state occupation factor of a DFT-based average-atom model that captures essential non-LTE effects in plasmas—including autoionization and dielectronic recombination—thus extending DFT-based models to new regimes. We then expand the self-consistent electronic orbitals of the non-LTE DFT-AA model to generate multi-configuration electronic structure and detailed opacity spectra. This article is part of the theme issue ‘Dynamic and transient processes in warm dense matter’.

1 citations


06 Jul 2023
TL;DR: In this article , the authors consider a quantitative metric for evaluating and optimizing trajectories in the context of real-time time-dependent density functional theory (TDDFT) and propose a cost-reducing scheme to obtain converged results even when expensive core-electron contributions preclude large supercells.
Abstract: Real-time time-dependent density functional theory (TDDFT) is presently the most accurate available method for computing electronic stopping powers from first principles. However, obtaining application-relevant results often involves either costly averages over multiple calculations or ad hoc selection of a representative ion trajectory. We consider a broadly applicable, quantitative metric for evaluating and optimizing trajectories in this context. This methodology enables rigorous analysis of the failure modes of various common trajectory choices in crystalline materials. Although randomly selecting trajectories is common practice in stopping power calculations in solids, we show that nearly 30% of random trajectories in an FCC aluminium crystal will not representatively sample the material over the time and length scales feasibly simulated with TDDFT, and unrepresentative choices incur errors of up to 60%. We also show that finite-size effects depend on ion trajectory via"ouroboros"effects beyond the prevailing plasmon-based interpretation, and we propose a cost-reducing scheme to obtain converged results even when expensive core-electron contributions preclude large supercells. This work helps to mitigate poorly controlled approximations in first-principles stopping power calculations, allowing 1-2 order of magnitude cost reductions for obtaining representatively averaged and converged results.

1 citations


Journal ArticleDOI
TL;DR: In this paper , the authors report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments, and demonstrate that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling.
Abstract: We report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments. Two cryogenically cooled experimental platforms were developed: an integrated platform fielded on the Z pulsed power generator that combines magnetization, laser preheat, and pulsed-power-driven fuel compression and a laser-only platform in a separate chamber that enables measurements of the laser preheat energy using shadowgraphy measurements. The laser-only experiments suggest that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling and in line with simulation predictions. The laser preheat configuration was applied to a cryogenically cooled integrated experiment that used a novel cryostat configuration that cooled the MagLIF liner from both ends. The integrated experiment, z3576, coupled 2.32 ± 0.25 kJ preheat energy to the fuel, the highest to-date, demonstrated excellent temperature control and nominal current delivery, and produced one of the highest pressure stagnations as determined by a Bayesian analysis of the data.

Journal ArticleDOI
TL;DR: In this article , the authors systematically investigate variations in dynamic electron-ion collision frequencies in warm dense matter using data from a self-consistent field average-atom model and show that including the full quantum density of states, strong collisions, and inelastic collisions lead to significant changes in ν(ω).
Abstract: Simulations and diagnostics of high-energy-density plasmas and warm dense matter rely on models of material response properties, both static and dynamic (frequency-dependent). Here, we systematically investigate variations in dynamic electron–ion collision frequencies ν(ω) in warm dense matter using data from a self-consistent-field average-atom model. We show that including the full quantum density of states, strong collisions, and inelastic collisions lead to significant changes in ν(ω). These changes result in red shifts and broadening of the plasmon peak in the dynamic structure factor, an effect observable in x-ray Thomson scattering spectra, and modify stopping powers around the Bragg peak. These changes improve the agreement of computationally efficient average-atom models with first-principles time-dependent density functional theory in warm dense aluminum, carbon, and deuterium.

Journal ArticleDOI
TL;DR: In this paper , the authors derived a general formula for modeling the absolute response of non-focusing x-ray diagnostics, such as X-ray imagers, one-dimensional space-resolved spectrometers, and xray power diagnostics.
Abstract: Accurate understanding of x-ray diagnostics is crucial for both interpreting high-energy-density experiments and testing simulations through quantitative comparisons. X-ray diagnostic models are complex. Past treatments of individual x-ray diagnostics on a case-by-case basis have hindered universal diagnostic understanding. Here, we derive a general formula for modeling the absolute response of non-focusing x-ray diagnostics, such as x-ray imagers, one-dimensional space-resolved spectrometers, and x-ray power diagnostics. The present model is useful for both data modeling and data processing. It naturally accounts for the x-ray crystal broadening. The new model verifies that standard approaches for a crystal response can be good approximations, but they can underestimate the total reflectivity and overestimate spectral resolving power by more than a factor of 2 in some cases near reflectivity edge features. We also find that a frequently used, simplified-crystal-response approximation for processing spectral data can introduce an absolute error of more than an order of magnitude and the relative spectral radiance error of a factor of 3. The present model is derived with straightforward geometric arguments. It is more general and is recommended for developing a unified picture and providing consistent treatment over multiple x-ray diagnostics. Such consistency is crucial for reliable multi-objective data analyses.

Journal ArticleDOI
TL;DR: In this paper , an experimental platform based on x-ray differential heating and time-resolved refraction-enhanced radiography coupled to a deep neural network was devised to retrieve the first measurement of thermal conductivity of CH and Be in the warm dense matter regime and compare their measurement with the most commonly adopted models.
Abstract: Abstract Transport properties of high energy density matter affect the evolution of many systems, ranging from the geodynamo in the Earth’s core, to hydrodynamic instability growth in inertial confinement fusion capsules. Large uncertainties of these properties are present in the warm dense matter regime where both plasma models and condensed matter models become invalid. To overcome this limit, we devise an experimental platform based on x-ray differential heating and time-resolved refraction-enhanced radiography coupled to a deep neural network. We retrieve the first measurement of thermal conductivity of CH and Be in the warm dense matter regime and compare our measurement with the most commonly adopted models. The discrepancies observed are related to the estimation of a correction term from electron-electron collisions. The results necessitate improvement of transport models in the warm dense matter regime and could impact the understanding of the implosion performance for inertial confinement fusion.