scispace - formally typeset
Search or ask a question

Showing papers by "Steven J. Schrodi published in 2015"


Journal ArticleDOI
18 Dec 2015-PLOS ONE
TL;DR: A role for an altered gut microbiome and increased bacterial translocation following exercise in ME/CFS patients that may account for the profound post-exertional malaise experienced by patients is suggested.
Abstract: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease characterized by intense and debilitating fatigue not due to physical activity that has persisted for at least 6 months, post-exertional malaise, unrefreshing sleep, and accompanied by a number of secondary symptoms, including sore throat, memory and concentration impairment, headache, and muscle/joint pain. In patients with post-exertional malaise, significant worsening of symptoms occurs following physical exertion and exercise challenge serves as a useful method for identifying biomarkers for exertion intolerance. Evidence suggests that intestinal dysbiosis and systemic responses to gut microorganisms may play a role in the symptomology of ME/CFS. As such, we hypothesized that post-exertion worsening of ME/CFS symptoms could be due to increased bacterial translocation from the intestine into the systemic circulation. To test this hypothesis, we collected symptom reports and blood and stool samples from ten clinically characterized ME/CFS patients and ten matched healthy controls before and 15 minutes, 48 hours, and 72 hours after a maximal exercise challenge. Microbiomes of blood and stool samples were examined. Stool sample microbiomes differed between ME/CFS patients and healthy controls in the abundance of several major bacterial phyla. Following maximal exercise challenge, there was an increase in relative abundance of 6 of the 9 major bacterial phyla/genera in ME/CFS patients from baseline to 72 hours post-exercise compared to only 2 of the 9 phyla/genera in controls (p = 0.005). There was also a significant difference in clearance of specific bacterial phyla from blood following exercise with high levels of bacterial sequences maintained at 72 hours post-exercise in ME/CFS patients versus clearance in the controls. These results provide evidence for a systemic effect of an altered gut microbiome in ME/CFS patients compared to controls. Upon exercise challenge, there were significant changes in the abundance of major bacterial phyla in the gut in ME/CFS patients not observed in healthy controls. In addition, compared to controls clearance of bacteria from the blood was delayed in ME/CFS patients following exercise. These findings suggest a role for an altered gut microbiome and increased bacterial translocation following exercise in ME/CFS patients that may account for the profound post-exertional malaise experienced by ME/CFS patients.

96 citations


Journal ArticleDOI
TL;DR: Results demonstrate that focusing on functional variants may be an effective approach when conducting a phenome-wide association study (PheWAS), and indicate that a nonsense variant in ARMS2 is associated with age-related macular degeneration (AMD).
Abstract: The genome-wide association study (GWAS) is a powerful approach for studying the genetic complexities of human disease. Unfortunately, GWASs often fail to identify clinically significant associations and describing function can be a challenge. GWAS is a phenotype-to-genotype approach. It is now possible to conduct a converse genotype-to-phenotype approach using extensive electronic medical records to define a phenome. This approach associates a single genetic variant with many phenotypes across the phenome and is called a phenome-wide association study (PheWAS). The majority of PheWASs conducted have focused on variants identified previously by GWASs. This approach has been efficient for rediscovering gene–disease associations while also identifying pleiotropic effects for some single-nucleotide polymorphisms (SNPs). However, the use of SNPs identified by GWAS in a PheWAS is limited by the inherent properties of the GWAS SNPs, including weak effect sizes and difficulty when translating discoveries to function. To address these challenges, we conducted a PheWAS on 105 presumed functional stop-gain and stop-loss variants genotyped on 4235 Marshfield Clinic patients. Associations were validated on an additional 10 640 Marshfield Clinic patients. PheWAS results indicate that a nonsense variant in ARMS2 (rs2736911) is associated with age-related macular degeneration (AMD). These results demonstrate that focusing on functional variants may be an effective approach when conducting a PheWAS.

40 citations


Journal ArticleDOI
TL;DR: Genome-wide association studies for carriage in humans identified SNPs in IL4, DEFB1, CRP, and VDR for persistent nasal carriage and suggested NR3C1 haplotypes may either enhance risk or provide protection from colonization.

32 citations


Journal ArticleDOI
TL;DR: The methods described herein show a viable path to robustly estimating both the expected prevalence of autosomal recessive phenotypes and corresponding credible intervals using population-based genetic databases that have recently become available.
Abstract: Genetic methods can complement epidemiological surveys and clinical registries in determining prevalence of monogenic autosomal recessive diseases. Several large population-based genetic databases, such as the NHLBI GO Exome Sequencing Project, are now publically available. By assuming Hardy-Weinberg equilibrium, the frequency of individuals homozygous in the general population for a particular pathogenic allele can be directly calculated from a sample of chromosomes where some harbor the pathogenic allele. Further assuming that the penetrance of the pathogenic allele(s) is known, the prevalence of recessive phenotypes can be determined. Such work can inform public health efforts for rare recessive diseases. A Bayesian estimation procedure has yet to be applied to the problem of estimating disease prevalence from large population-based genetic data. A Bayesian framework is developed to derive the posterior probability density of monogenic, autosomal recessive phenotypes. Explicit equations are presented for the credible intervals of these disease prevalence estimates. A primary impediment to performing accurate disease prevalence calculations is the determination of truly pathogenic alleles. This issue is discussed, but in many instances remains a significant barrier to investigations solely reliant on statistical interrogation--functional studies can provide important information for solidifying evidence of variant pathogenicity. We also discuss several challenges to these efforts, including the population structure in the sample of chromosomes, the treatment of allelic heterogeneity, and reduced penetrance of pathogenic variants. To illustrate the application of these methods, we utilized recently published genetic data collected on a large sample from the Schmiedeleut Hutterites. We estimate prevalence and calculate 95% credible intervals for 13 autosomal recessive diseases using these data. In addition, the Bayesian estimation procedure is applied to data from a central European study of hereditary fructose intolerance. The methods described herein show a viable path to robustly estimating both the expected prevalence of autosomal recessive phenotypes and corresponding credible intervals using population-based genetic databases that have recently become available. As these genetic databases increase in number and size with the advent of cost-effective next-generation sequencing, we anticipate that these methods and approaches may be helpful in recessive disease prevalence calculations, potentially impacting public health management, health economic analyses, and treatment of rare diseases.

29 citations


Journal ArticleDOI
TL;DR: SeqHBase is developed, a big data-based toolset for analysing family based sequencing data to detect de novo, inherited homozygous, or compound heterozygous mutations that may contribute to disease manifestations, and its high efficiency and scalability are demonstrated.
Abstract: Background Whole-genome sequencing (WGS) and whole-exome sequencing (WES) technologies are increasingly used to identify disease-contributing mutations in human genomic studies. It can be a significant challenge to process such data, especially when a large family or cohort is sequenced. Our objective was to develop a big data toolset to efficiently manipulate genome-wide variants, functional annotations and coverage, together with conducting family based sequencing data analysis. Methods Hadoop is a framework for reliable, scalable, distributed processing of large data sets using MapReduce programming models. Based on Hadoop and HBase, we developed SeqHBase, a big data-based toolset for analysing family based sequencing data to detect de novo, inherited homozygous, or compound heterozygous mutations that may contribute to disease manifestations. SeqHBase takes as input BAM files (for coverage at every site), variant call format (VCF) files (for variant calls) and functional annotations (for variant prioritisation). Results We applied SeqHBase to a 5-member nuclear family and a 10-member 3-generation family with WGS data, as well as a 4-member nuclear family with WES data. Analysis times were almost linearly scalable with number of data nodes. With 20 data nodes, SeqHBase took about 5 secs to analyse WES familial data and approximately 1 min to analyse WGS familial data. Conclusions These results demonstrate SeqHBase’s high efficiency and scalability, which is necessary as WGS and WES are rapidly becoming standard methods to study the genetics of familial disorders.

18 citations


Journal ArticleDOI
TL;DR: It is suggested that common SNPs within the BUD13–APOA5 can affect TG and LDL-C response to statin therapy in a North American population.
Abstract: Genetic variants within the BUD13-APOA5 gene region are known to be associated with high-density lipoprotein cholesterol (HDL-C) and triglyceride (TG) levels. Recent studies suggest that single-nucleotide polymorphisms (SNPs) within this region affect HDL-C response to statin-fibrate combination therapy and low-density lipoprotein cholesterol (LDL-C) response to statin therapy. We hypothesized that SNPs within the BUD13-APOA5 region are associated with TG, HDL-C, and LDL-C response to statin therapy. We examined 1520 observations for 1086 patients from the Personalized Medicine Research Project, a large biorepository at the Marshfield Clinic Research Foundation, who had received statin therapy and been previously genotyped for polymorphisms in the 11q23 chromosomal region. A significant differential response to statin therapy was observed for three SNPs. The minor allele at rs11605293 significantly attenuated TG-lowering response to pravastatin (P=1.59E-04) while the minor allele at rs12806755 was associated with a similar response to lovastatin (P=1.92E-04). Genotypes at rs947990 significantly attenuated LDL-C reduction to atorvastatin therapy (P=6.68E-04) with some patients with the minor allele having LDL-C increase following therapy. No SNPs within the BUD13-APOA5 region were associated with a significant effect on HDL-C reduction in response to statin therapy. In conclusion, this study suggests that common SNPs within the BUD13-APOA5 can affect TG and LDL-C response to statin therapy in a North American population.

6 citations


Journal ArticleDOI
02 Sep 2015
TL;DR: A formula is derived for the exact P-value of the TDT McNemar statistic and it is shown that the asymptotic P-values for the McNemars can often depart considerably from the exactP-values, even when sample sizes are relatively large.
Abstract: The transmission/disequilibrium test (TDT) is a popular method for analyzing genetic data in studies of complex disease. It is often assumed that the P-values for the test are well-calculated using the asymptotic, chi-squared distribution. However, that is not always an accurate assumption. A formula is derived for the exact P-value of the TDT McNemar statistic and we show that the asymptotic P-values for the McNemar statistic can often depart considerably from the exact P-values, even when sample sizes are relatively large. Notably, the asymptotic P-values can be either too large or too small, leading to either false positive or false negative results. Since the exact P-value for this statistic is simple to calculate, it will be preferable to do so. We also anticipate that our derivation may find utility in other applications of the McNemar statistic where the underlying variables are binomially-distributed.

1 citations