scispace - formally typeset
Search or ask a question

Showing papers by "Suzanne Aigrain published in 2023"


Journal ArticleDOI
TL;DR: In this article , the relative performances of four algorithms developed by independent research groups specifically for the filtering of activity in the light curves (LCs) of young active stars, prior to the search for planetary transit signals: Notch and LOCoR(N&L), Young Stars Detrending(YSD), K2 Systematics Correction(K2SC) and VARLET.
Abstract: Context. To date, stellar activity is one of the main limitations in detecting small exoplanets via transit photometry. Since this activity is enhanced in young stars, traditional filtering algorithms may severely under-perform in detecting such exoplanets. Aims.This paper aims to compare the relative performances of four algorithms developed by independent research groups specifically for the filtering of activity in the light curves (LCs) of young active stars, prior to the search for planetary transit signals: Notch and LOCoR(N&L), Young Stars Detrending(YSD), K2 Systematics Correction(K2SC) and VARLET. We include in the comparison also the two best-performing algorithms implemented in Wotan, namely the Tukey's biweight and the Huber Spline. Methods. We performed a series of injection-retrieval tests of planetary transits of different types, from Jupiter down to Earth-sized planets, moving both on circular and eccentric orbits. The tests were carried out over 100 simulated LCs of both quiet and active solar-like stars that will be observed by the ESA space telescope PLATO. Results. We found that N&L is the best choice in many cases, since it misses the lowest number of transits. However, it under-performs if the planetary orbital period closely matches the stellar rotation period, especially in the case of small planets for which the biweight and VARLET algorithms work better. For LCs with a large number of data, the combined results of YSD and Huber Spline yield the highest recovery percentage. Filtering algorithms allow us to get a very precise estimate of the orbital period and the mid-transit time of the detected planets, while the planet-to-star radius is under-estimated most of the time, especially in the case of grazing transits or eccentric orbits. A refined filtering taking into account the presence of the planet is compulsory for a proper planetary characterization.

Journal ArticleDOI
TL;DR: In this article , a multidimensional Gaussian Process Regression on the radial velocity and the activity indicators is used to characterize the planetary Doppler signals of the young star K2-233.
Abstract: Detecting planetary signatures in radial velocity time-series of young stars is challenging due to their inherently strong stellar activity. However, it is possible to learn information about the properties of the stellar signal by using activity indicators measured from the same stellar spectra used to extract radial velocities. In this manuscript, we present a reanalysis of spectroscopic HARPS data of the young star K2-233, which hosts three transiting planets. We perform a multidimensional Gaussian Process regression on the radial velocity and the activity indicators to characterise the planetary Doppler signals. We demonstrate, for the first time on a real dataset, that the use of a multidimensional Gaussian Process can boost the precision with which we measure the planetary signals compared to a one-dimensional Gaussian Process applied to the radial velocities alone. We measure the semi-amplitudes of K2-233 b, c, and d as $1.31_{-0.74}^{+0.81}$ m s−1 , $1.81_{-0.67}^{+0.71}$ m s−1 and $2.72_{-0.70}^{+0.66}$ m s−1 , which translates into planetary masses of $2.4_{-1.3}^{+1.5}$ , $4.6_{-1.7}^{+1.8}$ , and $10.3_{-2.6}^{+2.4}$M⊕ , respectively. These new mass measurements make K2-233 d a valuable target for transmission spectroscopy observations with JWST. K2-233 is the only young system with two detected inner planets below the radius valley and a third outer planet above it. This makes it an excellent target to perform comparative studies, to inform our theories of planet evolution, formation, migration, and atmospheric evolution.