scispace - formally typeset
Search or ask a question

Showing papers by "Taner Yildirim published in 2019"


Journal ArticleDOI
11 Feb 2019
TL;DR: In this article, a data-driven approach was developed to accelerate materials screening and learn structure-property relationships, and new descriptors for gas adsorption in metal-organic frameworks (MOFs) derived from the energetics of MOF-guest interactions.
Abstract: The low volumetric density of hydrogen is a major limitation to its use as a transportation fuel. Filling a fuel tank with nanoporous materials, such as metal–organic frameworks (MOFs), could greatly improve the deliverable capacity of these tanks if appropriate materials could be found. However, since MOFs can be made from many combinations of metal nodes, organic linkers, and functional groups, the design space of possible MOFs is enormous. Experimental characterization of thousands of MOFs is infeasible, and even conventional molecular simulations can be prohibitively expensive for large databases. In this work, we have developed a data-driven approach to accelerate materials screening and learn structure–property relationships. We report new descriptors for gas adsorption in MOFs derived from the energetics of MOF–guest interactions. Using the bins of an energy histogram as features, we trained a sparse regression model to predict gas uptake in multiple MOF databases to an accuracy within 3 g L−1. The interpretable model parameters indicate that a somewhat weak attraction between hydrogen and the framework is ideal for cryogenic storage and release. Our machine learning method is more than three orders of magnitude faster than conventional molecular simulations, enabling rapid exploration of large numbers of MOFs. As a case study, we applied the method to screen a database of more than 50 000 experimental MOF structures. We experimentally validated one of the top candidates identified from the accelerated screening, MFU-4l. This material exhibited a hydrogen deliverable capacity of 47 g L−1 (54 g L−1 simulated) when operating at storage conditions of 77 K, 100 bar and delivery at 160 K, 5 bar.

156 citations


Journal ArticleDOI
TL;DR: It is realized that tailoring the pore size/geometry and chemistry, by virtue of alkynyl or naphthalene replacing phenyl within a series of isomorphic MOFs, can optimize methane storage working capacities, affording an exceptionally high working capacity.

11 citations


Posted Content
TL;DR: In this paper, it was shown that a critical pressure range is characterized by unique coherent quantum oscillations, indicating that the change in topology between two phases give rise to a new topological interface state.
Abstract: Layered transition metal chalcogenides are promising hosts of electronic Weyl nodes and topological superconductivity. MoTe$_2$ is a striking example that harbors both noncentrosymmetric T$_d$ and centrosymmetric T' phases, both of which have been identified as topologically nontrivial. Applied pressure tunes the structural transition separating these phases to zero temperature, stabilizing a mixed T$_d$-T' matrix that entails a unique network of interfaces between the two non-trivial topological phases. Here, we show that this critical pressure range is characterized by unique coherent quantum oscillations, indicating that the change in topology between two phases give rise to a new topological interface state. A rare combination of topologically nontrivial electronic structures and locked-in transformation barriers leads to this counterintuitive situation wherein quantum oscillations can be observed in a structurally inhomogeneous material. These results open the possibility of stabilizing multiple topological superconducting phases, which are important for solving the decoherence problem in quantum computers.

7 citations