scispace - formally typeset
Search or ask a question

Showing papers by "Tilmann D. Märk published in 2023"


Journal ArticleDOI
TL;DR: In this article , a new abiotic route in the presence of protonated molecular dimers of glycine in a cold gaseous atmosphere without further need for a solid catalytic substrate was proposed.
Abstract: Peptide chain formation from amino acids such as glycine is a key step in the emergence of life. Unlike their synthesis by living systems, how peptide chains grow under abiotic conditions is an open question given the variety of organic compounds discovered in various astrophysical environments, comets and meteorites. We propose a new abiotic route in the presence of protonated molecular dimers of glycine in a cold gaseous atmosphere without further need for a solid catalytic substrate. The results provide evidence for the preferential formation of mixed protonated dimers of glycine consisting of a dipeptide and a glycine molecule instead of pure protonated glycine dimers. Additional measurements mimicking a cosmic-ray impact in terms of internal excitation show that a single gas-phase collision induces polymerization via dehydration in both the mixed and pure dimer ions. Peptide chain growth is thus demonstrated to occur via a unimolecular gas-phase reaction in an excited cluster ion.

1 citations


Journal ArticleDOI
TL;DR: In this article , a selective reagent ion-time-of-flight-mass spectrometric (SRI-ToF-MS) fundamental study characterising the reactions of O2+• with six common halogenated organic compounds is presented.

Journal ArticleDOI
TL;DR: In this paper , the product ions associated with the ion mobility peaks obtained from a High Kinetic Energy-Ion Mobility Spectrometer (HiKE-IMS) measurement of a volatile can be identified using a Proton Transfer Reaction/Selective Reagent Ion-Time-of-Flight-Mass Spectrometers (PTR/SRI-ToF-MS) when operating both instruments at the same reduced electric field value and similar humidities.
Abstract: Here, we present proof of principle studies to demonstrate how the product ions associated with the ion mobility peaks obtained from a High Kinetic Energy-Ion Mobility Spectrometer (HiKE-IMS) measurement of a volatile can be identified using a Proton Transfer Reaction/Selective Reagent Ion-Time-of-Flight-Mass Spectrometer (PTR/SRI-ToF-MS) when operating both instruments at the same reduced electric field value and similar humidities. This identification of product ions improves our understanding of the ion chemistry occurring in the ion source region of a HiKE-IMS. The combination of the two analytical techniques is needed, because in the HiKE-IMS three reagent ions (NO+, H3O+ and O2+•) are present at the same time in high concentrations in the reaction region of the instrument for reduced electric fields of 100 Td and above. This means that even with a mass spectrometer coupled to the HiKE-IMS, the assignment of the product ions to a given reagent ion to a high level of confidence can be challenging. In this paper, we demonstrate an alternative approach using PTR/SRI-ToF-MS that allows separate investigations of the reactions of the reagent ions NO+, H3O+ and O2+•. In this study, we apply this approach to four nitrile containing organic compounds, namely acetonitrile, 2-furonitrile, benzonitrile and acrylonitrile. Both the HiKE-IMS and the PTR/SRI-ToF-MS instruments were operated at a commonly used reduced electric field strength of 120 Td and with gas flows at the same humidities.

Journal ArticleDOI
TL;DR: In this paper , the potential use of proton transfer reaction/selective reagent ion-time-of-flight mass spectrometry (PTR/SRI-ToF-MS) to monitor hexafluoroisopropanol (HFIP) in breath was explored.