scispace - formally typeset
Search or ask a question

Showing papers by "Tobias Bocklet published in 2023"


Journal ArticleDOI
TL;DR: In this article , cycle-consistent generative adversarial networks have been used in non-parallel voice conversion (VC) to learn mappings between source and target features without relying on parallel training data.
Abstract: Cycle-consistent generative adversarial networks have been widely used in non-parallel voice conversion (VC). Their ability to learn mappings between source and target features without relying on parallel training data eliminates the need for temporal alignments. However, most methods decouple the conversion of acoustic features from synthesizing the audio signal by using separate models for conversion and waveform synthesis. This work unifies conversion and synthesis into a single model, thereby eliminating the need for a separate vocoder. By leveraging cycle-consistent training and a self-supervised auxiliary training task, our model is able to efficiently generate converted high-quality raw audio waveforms. Subjective listening tests show that our method outperforms the baseline in whispered speech conversion (up to 6.7% relative improvement), and mean opinion score predictions yield competitive results in conventional VC (between 0.5% and 2.4% relative improvement).

Journal ArticleDOI
TL;DR: This article used a modified wav2vec 2.0 system with an attention-based classification head and multi-task learning to detect stuttering in cross-corpus and cross-language data.
Abstract: Most stuttering detection and classification research has viewed stuttering as a multi-class classification problem or a binary detection task for each dysfluency type; however, this does not match the nature of stuttering, in which one dysfluency seldom comes alone but rather co-occurs with others. This paper explores multi-language and cross-corpus end-to-end stuttering detection as a multi-label problem using a modified wav2vec 2.0 system with an attention-based classification head and multi-task learning. We evaluate the method using combinations of three datasets containing English and German stuttered speech, one containing speech modified by fluency shaping. The experimental results and an error analysis show that multi-label stuttering detection systems trained on cross-corpus and multi-language data achieve competitive results but performance on samples with multiple labels stays below over-all detection results.