scispace - formally typeset
Search or ask a question

Showing papers by "Torsten A. Ensslin published in 2011"


Journal ArticleDOI
TL;DR: The results of comparison of Planck along with IRAS data with Green Bank Telescope 21-cm observations in 14 fields covering more than 800 square degrees at high Galactic latitude are presented in this article.
Abstract: This paper presents the first results of comparison of Planck along with IRAS data with Green Bank Telescope 21-cm observations in 14 fields covering more than 800 square degrees at high Galactic latitude. Galactic dust emission for fields with average HI column density lower than 2 x 10^20 cm^-2 is well correlated with 21-cm emission. The residual emission in these fields, once the HI-correlated emission is removed, is consistent with the expected statistical properties of the cosmic infrared background fluctuations. Fields with larger column densities show significant excess dust emission compared to the HI column density. Regions of excess lie in organized structures that suggest the presence of hydrogen in molecular form, though they are not always correlated with CO emission. Dust emission from intermediate-velocity clouds is detected with high significance. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T~20 K), lower sub-millimeter dust opacity, and a relative abundance of very small grains to large grains about four times higher. These results are compatible with expectations for clouds that are part of the Galactic fountain in which there is dust shattering and fragmentation. Correlated dust emission in HVCs is not detected; the average of the 99.9% confidence upper limits to the emissivity is 0.15 times the local ISM value at 857 and 3000 GHz, in accordance with gas phase evidence for lower metallicity and depletion in these clouds. Unexpected anti-correlated variations of the dust temperature and emission cross-section per H atom are identified in the local ISM and IVCs, a trend that continues into molecular environments. This suggests that dust growth through aggregation, seen in molecular clouds, is active much earlier in the cloud condensation and star formation processes.

219 citations


Posted Content
TL;DR: Cosmic Origins Explorer (Cosmic Explorer) as mentioned in this paper is a full-sky, microwave-band satellite with an angular resolution ranging from 23 arcmin (45 GHz) and 1.3 arcmin(795 GHz).
Abstract: COrE (Cosmic Origins Explorer) is a fourth-generation full-sky, microwave-band satellite recently proposed to ESA within Cosmic Vision 2015-2025. COrE will provide maps of the microwave sky in polarization and temperature in 15 frequency bands, ranging from 45 GHz to 795 GHz, with an angular resolution ranging from 23 arcmin (45 GHz) and 1.3 arcmin (795 GHz) and sensitivities roughly 10 to 30 times better than PLANCK (depending on the frequency channel). The COrE mission will lead to breakthrough science in a wide range of areas, ranging from primordial cosmology to galactic and extragalactic science. COrE is designed to detect the primordial gravitational waves generated during the epoch of cosmic inflation at more than $3\sigma $ for $r=(T/S)>=10^{-3}$. It will also measure the CMB gravitational lensing deflection power spectrum to the cosmic variance limit on all linear scales, allowing us to probe absolute neutrino masses better than laboratory experiments and down to plausible values suggested by the neutrino oscillation data. COrE will also search for primordial non-Gaussianity with significant improvements over Planck in its ability to constrain the shape (and amplitude) of non-Gaussianity. In the areas of galactic and extragalactic science, in its highest frequency channels COrE will provide maps of the galactic polarized dust emission allowing us to map the galactic magnetic field in areas of diffuse emission not otherwise accessible to probe the initial conditions for star formation. COrE will also map the galactic synchrotron emission thirty times better than PLANCK. This White Paper reviews the COrE science program, our simulations on foreground subtraction, and the proposed instrumental configuration.

200 citations


Journal ArticleDOI
TL;DR: In this paper, the XMM-Newton follow-up for confirmation of Planck cluster candidates is presented, where a total of 21 candidates are confirmed as extended X-ray sources.
Abstract: We present the XMM-Newton follow-up for confirmation of Planck cluster candidates. Twenty-five candidates have been observed to date using snapshot (~10 ksec) exposures, ten as part of a pilot programme to sample a low range of signal-to-noise ratios (4 5 candidates. The sensitivity and spatial resolution of XMM-Newton allows unambiguous discrimination between clusters and false candidates. The 4 false candidates have S/N <= 4.1. A total of 21 candidates are confirmed as extended X-ray sources. Seventeen are single clusters, the majority of which are found to have highly irregular and disturbed morphologies (about ~70%). The remaining four sources are multiple systems, including the unexpected discovery of a supercluster at z=0.45. For 20 sources we are able to derive a redshift estimate from the X-ray Fe K line (albeit of variable quality). The new clusters span the redshift range 0.09 <= z <= 0.54, with a median redshift of z~0.37. A first determination is made of their X-ray properties including the characteristic size, which is used to improve the estimate of the SZ Compton parameter, Y_SZ. The follow-up validation programme has helped to optimise the Planck candidate selection process. It has also provided a preview of the X-ray properties of these newly-discovered clusters, allowing comparison with their SZ properties, and to the X-ray and SZ properties of known clusters observed in the Planck survey. Our results suggest that Planck may have started to reveal a non-negligible population of massive dynamically perturbed objects that is under-represented in X-ray surveys. However, despite their particular properties, these new clusters appear to follow the Y_SZ-Y_X relation established for X-ray selected objects, where Y_X is the product of the gas mass and temperature.

165 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that anomalous dust emission is present in the atomic, molecular and dark gas phases throughout the Galactocentricity of the Galactic disk, and the derived dust propeties associated with the dark gas phase are derived but do not allow us to reveal the nature of this phase.
Abstract: (abridged) Planck has observed the entire sky from 30 GHz to 857GHz. The observed foreground emission contains contributions from different phases of the interstellar medium (ISM). We have separated the observed Galactic emission into the different gaseous components (atomic, molecular and ionised) in each of a number of Galactocentric rings. Templates are created for various Galactocentric radii using velocity information from atomic (neutral hydrogen) and molecular (12CO) observations. The ionised template is assumed to be traced by free-free emission as observed by WMAP, while 408 MHz emission is used to trace the synchrotron component. Gas emission not traced by the above templates, namely "ark gas", as evidenced using Planck data, is included as an additional template, the first time such a component has been used in this way. These templates are then correlated with each of the Planck frequency bands, as well as other ancillary data. The emission per column density of the gas templates allows us to create distinct spectral energy distributions (SEDs) per Galactocentric ring and in each of the gaseous tracers from 1.4 GHz to 25 THz (12\mu m). Apart from the thermal dust and free-free emission, we have probed the Galaxy for anomalous (e.g., spinning) dust as well as synchrotron emission. We show that anomalous dust emission is present in the atomic, molecular and dark gas phases throughout the Galactic disk. The derived dust propeties associated with the dark gas phase are derived but do not allow us to reveal the nature of this phase. For all environments, the anomalous emission is consistent with rotation from polycyclic aromatic hydrocarbons (PAHs) and, according to our simple model, accounts for $(25\pm5)%$ (statistical) of the total emission at 30 GHz.

157 citations


Journal ArticleDOI
TL;DR: In this paper, the spectral energy distributions of a sample of "extreme" radio sources were analyzed using the Planck Early Release Compact Source Catalog (ERCSC) with quasi-simultaneous ground-based observations, as well as archival data, at frequencies below or overlapping Planck frequency bands.
Abstract: Planck's all sky surveys at 30-857 GHz provide an unprecedented opportunity to follow the radio spectra of a large sample of extragalactic sources to frequencies 2-20 times higher than allowed by past, large area, ground-based surveys. We combine the results of the Planck Early Release Compact Source Catalog (ERCSC) with quasi-simultaneous ground-based observations, as well as archival data, at frequencies below or overlapping Planck frequency bands, to validate the astrometry and photometry of the ERCSC radio sources and study the spectral features shown in this new frequency window opened by Planck. The ERCSC source positions and flux density scales are found to be consistent with the ground-based observations. We present and discuss the spectral energy distributions (SEDs) of a sample of "extreme" radio sources to illustrate the richness of the ERCSC for the study of extragalactic radio sources. Variability is found to play a role in the unusual spectral features of some of these sources.

74 citations