scispace - formally typeset
Search or ask a question

Showing papers by "Ulrich Geppert published in 2010"


Journal ArticleDOI
TL;DR: In this paper, the authors studied the same cases for which the Hall instability was predicted by solving the non-linear Hall induction equation using a two-dimensional conservative and divergence-free finite difference scheme that overcomes intrinsic difficulties of pseudo-spectral methods and can describe situations with arbitrarily high magnetic Reynolds numbers.
Abstract: Context. The non-linear Hall term present in the induction equation in the electron-magneto-hydrodynamics limit is responsible for the Hall drift of the magnetic field and, in some cases, for the so-called Hall instability. Aims. We investigate whether or not the growth rates and eigenfunctions found in the linear analysis are consistent with the results of non-linear numerical simulations. Methods. Following the linear analysis of Rheinhardt & Geppert, we study the same cases for which the Hall instability was predicted by solving the non-linear Hall induction equation using a two-dimensional conservative and divergence-free finite difference scheme that overcomes intrinsic difficulties of pseudo-spectral methods and can describe situations with arbitrarily high magnetic Reynolds numbers. Results. We show that unstable modes can grow to the level of the background field without being overwhelmed by the Hall cascade, and cause a complete rearrangement of the field geometry. We confirm both the growth rates and eigenfunctions found in the linearized analysis and hence the instability. In the non-linear regime, after the unstable modes grow to the background level, the naturally selected modes become stable and oscillatory. Later on, the evolution tends to select the modes with the longest possible wavelengths, but this process occurs on the magnetic diffusion timescale. Conclusions. We confirm the existence of the Hall instability. We argue against using the misleading terminology that associates the non-linear Hall term with a turbulent Hall cascade, since small-scale structures are not created everywhere. The field evolves instead in a Burgers-like manner, forms local structures with strong gradients which become shocks in the zero resistivity limit, and Hall waves are launched and propagated through the entire domain.

38 citations