scispace - formally typeset
Search or ask a question

Showing papers by "Uwe Meyer-Baese published in 2015"


Proceedings ArticleDOI
TL;DR: An extensive study on ability and efficiency of Independent Component Analysis algorithms to perform blind source separation on mixed signals in software and implementation in hardware with a Field Programmable Gate Array (FPGA).
Abstract: The conditions that arise in the Cocktail Party Problem prevail across many fields creating a need for of Blind Source Separation. The need for BSS has become prevalent in several fields of work. These fields include array processing, communications, medical signal processing, and speech processing, wireless communication, audio, acoustics and biomedical engineering. The concept of the cocktail party problem and BSS led to the development of Independent Component Analysis (ICA) algorithms. ICA proves useful for applications needing real time signal processing. The goal of this research was to perform an extensive study on ability and efficiency of Independent Component Analysis algorithms to perform blind source separation on mixed signals in software and implementation in hardware with a Field Programmable Gate Array (FPGA). The Algebraic ICA (A-ICA), Fast ICA, and Equivariant Adaptive Separation via Independence (EASI) ICA were examined and compared. The best algorithm required the least complexity and fewest resources while effectively separating mixed sources. The best algorithm was the EASI algorithm. The EASI ICA was implemented on hardware with Field Programmable Gate Arrays (FPGA) to perform and analyze its performance in real time.

5 citations


Journal ArticleDOI
TL;DR: The development of this new tool for the signature distribution has not only extended and eased the applicability of this IPP technique, but it has also improved the signature hosting process itself.
Abstract: HDL-level design offers important advantages for the application of watermarking to IP cores, but its complexity also requires tools automating these watermarking algorithms. A new tool for signature distribution through combinational logic is proposed in this work. IPP@HDL, a previously proposed high-level watermarking technique, has been employed for evaluating the tool. IPP@HDL relies on spreading the bits of a digital signature at the HDL design level using combinational logic included within the original system. The development of this new tool for the signature distribution has not only extended and eased the applicability of this IPP technique, but it has also improved the signature hosting process itself. Three algorithms were studied in order to develop this automated tool. The selection of a cost function determines the best hosting solutions in terms of area and performance penalties on the IP core to protect. An 1D-DWT core and MD5 and SHA1 digital signatures were used in order to illustrate the benefits of the new tool and its optimization related to the extraction logic resources. Among the proposed algorithms, the alternative based on simulated annealing reduces the additional resources while maintaining an acceptable computation time and also saving designer effort and time.

4 citations


Proceedings ArticleDOI
TL;DR: This project attempts to implement a BSS system in hardware using the Generalized Hebbian Algorithm (GHA), a learning network model, to separate linearly mixed signals into their source signals.
Abstract: Principal component analysis (PCA) is a popular technique in reducing the dimension of a large data set so that more informed conclusions can be made about the relationship between the values in the data set. Blind source separation (BSS) is one of the many applications of PCA, where it is used to separate linearly mixed signals into their source signals. This project attempts to implement a BSS system in hardware. Due to unique characteristics of hardware implementation, the Generalized Hebbian Algorithm (GHA), a learning network model, is used. The FPGA used to compile and test the system is the Altera Cyclone III EP3C120F780I7.