scispace - formally typeset
Search or ask a question

Showing papers by "Vandana Gupta published in 2017"


Journal ArticleDOI
27 Feb 2017-PLOS ONE
TL;DR: This study uncovered and characterize abnormalities in spontaneous coiling, the earliest motor movement in the zebrafish, as a fully penetrant change specific to caf mutants that is ideal for future drug testing.
Abstract: Merosin deficient congenital muscular dystrophy (MDC1A) is a severe neuromuscular disorder with onset in infancy that is associated with severe morbidities (particularly wheelchair dependence) and early mortality. It is caused by recessive mutations in the LAMA2 gene that encodes a subunit of the extracellular matrix protein laminin 211. At present, there are no treatments for this disabling disease. The zebrafish has emerged as a powerful model system for the identification of novel therapies. However, drug discovery in the zebrafish is largely dependent on the identification of phenotypes suitable for chemical screening. Our goal in this study was to elucidate novel, early onset abnormalities in the candyfloss (caf) zebrafish, a model of MDC1A. We uncovered and characterize abnormalities in spontaneous coiling, the earliest motor movement in the zebrafish, as a fully penetrant change specific to caf mutants that is ideal for future drug testing.

9 citations



Posted ContentDOI
07 Apr 2017-bioRxiv
TL;DR: Novel ribosome-based disease processes that may be therapeutic modulated to restore muscle function in skeletal muscle diseases are identified and novel functions for ribosomes in regulating gene expression during skeletal muscle development are suggested.
Abstract: Developmental processes depend on the combined efforts of epigenetic, transcriptional and post-transcriptional processes that lead to the production of specific proteins that are important determinants of cellular identity and developmental processes. Ribosomes are a central component of the protein biosynthesis machinery in cells; however, their regulatory roles in the translational control of gene expression in an organ specific context during development remain to be defined. In a genetic screen to identify critical regulators of myogenesis, we identified a DEAD-Box RNA helicase, DDX27, that is required for the proliferation and myogenic commitment of skeletal muscle stem cells. DDX27 deficient skeletal muscle exhibits hypotrophy and impaired regeneration potential. We demonstrate that DDX27 regulates ribosomal RNA (rRNA) maturation, and thereby the ribosome biogenesis and the translation of specific transcripts that are required to maintain pluripotency and myogenic differentiation of satellite cells. These findings provide insight into the translational regulation of gene expression in myogenesis and suggest novel functions for ribosomes in regulating gene expression during skeletal muscle development.