scispace - formally typeset
Search or ask a question

Showing papers by "Vieri Fusi published in 2006"


Journal ArticleDOI
TL;DR: The synthesis and characterization of the new polyaza-phenolic-macrobicycle 32-hydroxy-1,4,7,10,13,16,19,22-octaazatricyclo-[11.11.1(26,30)]-diatriconta-26,28,Delta(30,32)-triene (L) are reported.
Abstract: The synthesis and characterization of the new polyaza-phenolic-macrobicycle 32-hydroxy-1,4,7,10,13,16,19,22-octaazatricyclo-[11.11.7.1(26,30)]-diatriconta-26,28,Delta(30,32)-triene (L) are reported. L incorporates a 2,6-dimethyl-phenolic unit bridging two opposite amine functions of the [24]aneN(8) polyazamacrocyclic base to obtain a large cage. The basicity and binding properties of L toward Cu(II), Zn(II), and Cl(-) were determined by means of potentiometric measurements in aqueous solution (298.1 +/- 0.1 K, I = 0.15 mol dm(-3)). L can add up to six acidic protons, yielding the H(5)L(5+) species or the H(6)L(6+) species, depending on the ionic medium used. The molecular topology of L permits the formation of a highly positive three-dimensional cavity in the polyprotonated species that is able to host the chloride anion. This was detected both using potentiometric data, log K = 41.33 for the reaction L + 6H(+) + Cl(-) = H(6)LCl(5+), and in (35)Cl NMR experiments that showed interactions also with the H(5)L(5+) and H(4)L(4+) species. The anion is probably hosted inside the three-dimensional cavity of L, and stabilized by H-bonding interactions with the ammonium groups, as depicted in the crystal structure of the H(6)L(6+) cation reported. L forms mono- and dinuclear complexes with all the metal ions investigated; the dinuclear species are the only existing species with an L:M(II) molar ratio of 1:2 at pH higher than 6. The phenolate oxygen atom coordinates the two metal ions in a bridged disposition, drawing them inside the macrobicyclic cavity. The two metals were found to be quite isolated by the medium, and were coordinated by all the amine groups of L, as shown by the crystal structure of the dinuclear [Zn(2)H(-1)L](3+) species. This species can bind guests such as hydroxide and phosphate anions. Studies of anion binding in aqueous solution using pyrochatecol violet as the sensing guest revealed that the [Zn(2)H(-1)L](3+) species is able to bind one phosphate at physiological pH.

31 citations