scispace - formally typeset
Search or ask a question
Author

William C. Jakes

Bio: William C. Jakes is an academic researcher. The author has contributed to research in topics: Systems design & Mobile telephony. The author has an hindex of 1, co-authored 1 publications receiving 8969 citations.

Papers
More filters
Book
01 Feb 1975
TL;DR: An in-depth and practical guide, Microwave Mobile Communications will provide you with a solid understanding of the microwave propagation techniques essential to the design of effective cellular systems.
Abstract: From the Publisher: IEEE Press is pleased to bring back into print this definitive text and reference covering all aspects of microwave mobile systems design. Encompassing ten years of advanced research in the field, this invaluable resource reviews basic microwave theory, explains how cellular systems work, and presents useful techniques for effective systems development. The return of this classic volume should be welcomed by all those seeking the original authoritative and complete source of information on this emerging technology. An in-depth and practical guide, Microwave Mobile Communications will provide you with a solid understanding of the microwave propagation techniques essential to the design of effective cellular systems.

9,064 citations


Cited by
More filters
Journal ArticleDOI
Siavash Alamouti1
TL;DR: This paper presents a simple two-branch transmit diversity scheme that provides the same diversity order as maximal-ratio receiver combining (MRRC) with one transmit antenna, and two receive antennas.
Abstract: This paper presents a simple two-branch transmit diversity scheme. Using two transmit antennas and one receive antenna the scheme provides the same diversity order as maximal-ratio receiver combining (MRRC) with one transmit antenna, and two receive antennas. It is also shown that the scheme may easily be generalized to two transmit antennas and M receive antennas to provide a diversity order of 2M. The new scheme does not require any bandwidth expansion or any feedback from the receiver to the transmitter and its computation complexity is similar to MRRC.

13,706 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the performance of using multi-element array (MEA) technology to improve the bit-rate of digital wireless communications and showed that with high probability extraordinary capacity is available.
Abstract: This paper is motivated by the need for fundamental understanding of ultimate limits of bandwidth efficient delivery of higher bit-rates in digital wireless communications and to also begin to look into how these limits might be approached. We examine exploitation of multi-element array (MEA) technology, that is processing the spatial dimension (not just the time dimension) to improve wireless capacities in certain applications. Specifically, we present some basic information theory results that promise great advantages of using MEAs in wireless LANs and building to building wireless communication links. We explore the important case when the channel characteristic is not available at the transmitter but the receiver knows (tracks) the characteristic which is subject to Rayleigh fading. Fixing the overall transmitted power, we express the capacity offered by MEA technology and we see how the capacity scales with increasing SNR for a large but practical number, n, of antenna elements at both transmitter and receiver. We investigate the case of independent Rayleigh faded paths between antenna elements and find that with high probability extraordinary capacity is available. Compared to the baseline n = 1 case, which by Shannon‘s classical formula scales as one more bit/cycle for every 3 dB of signal-to-noise ratio (SNR) increase, remarkably with MEAs, the scaling is almost like n more bits/cycle for each 3 dB increase in SNR. To illustrate how great this capacity is, even for small n, take the cases n = 2, 4 and 16 at an average received SNR of 21 dB. For over 99% of the channels the capacity is about 7, 19 and 88 bits/cycle respectively, while if n = 1 there is only about 1.2 bit/cycle at the 99% level. For say a symbol rate equal to the channel bandwith, since it is the bits/symbol/dimension that is relevant for signal constellations, these higher capacities are not unreasonable. The 19 bits/cycle for n = 4 amounts to 4.75 bits/symbol/dimension while 88 bits/cycle for n = 16 amounts to 5.5 bits/symbol/dimension. Standard approaches such as selection and optimum combining are seen to be deficient when compared to what will ultimately be possible. New codecs need to be invented to realize a hefty portion of the great capacity promised.

10,526 citations

Book
01 Jan 2005

9,038 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the design of channel codes for improving the data rate and/or the reliability of communications over fading channels using multiple transmit antennas and derive performance criteria for designing such codes under the assumption that the fading is slow and frequency nonselective.
Abstract: We consider the design of channel codes for improving the data rate and/or the reliability of communications over fading channels using multiple transmit antennas. Data is encoded by a channel code and the encoded data is split into n streams that are simultaneously transmitted using n transmit antennas. The received signal at each receive antenna is a linear superposition of the n transmitted signals perturbed by noise. We derive performance criteria for designing such codes under the assumption that the fading is slow and frequency nonselective. Performance is shown to be determined by matrices constructed from pairs of distinct code sequences. The minimum rank among these matrices quantifies the diversity gain, while the minimum determinant of these matrices quantifies the coding gain. The results are then extended to fast fading channels. The design criteria are used to design trellis codes for high data rate wireless communication. The encoding/decoding complexity of these codes is comparable to trellis codes employed in practice over Gaussian channels. The codes constructed here provide the best tradeoff between data rate, diversity advantage, and trellis complexity. Simulation results are provided for 4 and 8 PSK signal sets with data rates of 2 and 3 bits/symbol, demonstrating excellent performance that is within 2-3 dB of the outage capacity for these channels using only 64 state encoders.

7,105 citations

Journal ArticleDOI
TL;DR: It is illustrated that, under all scenarios studied, cooperation is beneficial in terms of increasing system throughput and cell coverage, as well as decreasing sensitivity to channel variations.
Abstract: For pt.I see ibid., p.1927-38. This is the second of a two-part paper on a new form of spatial diversity, where diversity gains are achieved through the cooperation of mobile users. Part I described the user cooperation concept and proposed a cooperation strategy for a conventional code-division multiple-access (CDMA) system. Part II investigates the cooperation concept further and considers practical issues related to its implementation. In particular, we investigate the optimal and suboptimal receiver design, and present performance analysis for the conventional CDMA implementation proposed in Part I. We also consider a high-rate CDMA implementation and a cooperation strategy when assumptions about the channel state information at the transmitters are relaxed. We illustrate that, under all scenarios studied, cooperation is beneficial in terms of increasing system throughput and cell coverage, as well as decreasing sensitivity to channel variations.

3,272 citations