scispace - formally typeset
Search or ask a question

Showing papers by "Xiao Ou Mao published in 2012"


Journal ArticleDOI
TL;DR: Treatment with glypican or enzymatic disruption of neurocan with chondroitinase ABC improves gross anatomical, histological, and functional outcome in the chronic phase of experimental stroke in rats.
Abstract: Physical and chemical constraints imposed by the periinfarct glial scar may contribute to the limited clinical improvement often observed after ischemic brain injury. To investigate the role of some of these mediators in outcome from cerebral ischemia, we treated rats with the growth-inhibitory chondroitin sulfate proteoglycan neurocan, the growth-stimulating heparan sulfate proteoglycan glypican, or the chondroitin sulfate proteoglycan-degrading enzyme chondroitinase ABC. Neurocan, glypican, or chondroitinase ABC was infused directly into the infarct cavity for 7 d, beginning 7 d after middle cerebral artery occlusion. Glypican and chondroitinase ABC reduced glial fibrillary acidic protein immunoreactivity and increased microtubule-associated protein-2 immunoreactivity in the periinfarct region, and glypican- and chondroitinase ABC-treated rats showed behavioral improvement compared with neurocan- or saline-treated rats. Glypican and chondroitinase ABC also increased neurite extension in cortical neuron cultures. Glypican increased fibroblast growth factor-2 expression and chondroitinase ABC increased brain-derived neurotrophic factor expression in these cultures, whereas no such effects were seen following neurocan treatment. Thus, treatment with glypican or enzymatic disruption of neurocan with chondroitinase ABC improves gross anatomical, histological, and functional outcome in the chronic phase of experimental stroke in rats. Changes in growth factor expression and neuritogenesis may help to mediate these effects.

90 citations


Journal ArticleDOI
19 Jun 2012-PLOS ONE
TL;DR: The results indicate that endogenous neurogenesis in a critical period following experimental stroke influences the course of long-term recovery, and specifically depleted DCX- and bromodeoxyuridine-immunoreactive cells in the SVZ and dentate gyrus following focal ischemia.
Abstract: We reported previously that ablation of doublecortin (DCX)-immunopositive newborn neurons in mice worsens anatomical and functional outcome measured 1 day after experimental stroke, but whether this effect persists is unknown. We generated transgenic mice that express herpes simplex virus thymidine kinase under control of the DCX promoter (DCX-TK transgenic mice). DCX-expressing and recently divided cells in the rostral subventricular zone (SVZ) and hippocampus of DCX-TK transgenic mice, but not wild-type mice, were specifically depleted after ganciclovir (GCV) treatment for 14 days. Focal cerebral ischemia was induced by permanent distal middle cerebral artery occlusion (MCAO) on day 14 of vehicle or GCV treatment, and mice were killed 12 weeks after MCAO. Infarct volume was significantly increased and neurologic deficits were more severe in GCV- compared to vehicle-treated DCX-TK transgenic mice at first 8 weeks, after depletion of DCX- and bromodeoxyuridine-immunoreactive cells in the SVZ and dentate gyrus following focal ischemia. Our results indicate that endogenous neurogenesis in a critical period following experimental stroke influences the course of long-term recovery.

87 citations


Journal ArticleDOI
26 Oct 2012-PLOS ONE
TL;DR: The results indicate that ischemia-induced newborn neurons contribute to anatomical and functional outcome after experimental stroke in middle-aged mice.
Abstract: Depletion of neurogenesis worsens functional outcome in young-adult mice after focal cerebral ischemia, but whether a similar effect occurs in older mice is unknown. Using middle-aged (12-month-old) transgenic (DCX-TK(+)) mice that express herpes simplex virus thymidine kinase (HSV-TK) under control of the doublecortin (DCX) promoter, we conditionally depleted DCX-positive cells in the subventricular zone (SVZ) and hippocampus by treatment with ganciclovir (GCV) for 14 days. Focal cerebral ischemia was induced by permanent occlusion of the middle cerebral artery (MCAO) or occlusion of the distal segment of middle cerebral artery (dMCAO) on day 14 of vehicle or GCV treatment and mice were killed 24 hr or 12 weeks later. Increased infarct volume or brain atrophy was found in GCV- compared to vehicle-treated middle-aged DCX-TK(+) mice, both 24 hr after MCAO and 12 weeks after dMCAO. More severe motor deficits were also observed in GCV-treated, middle-aged DCX-TK(+) transgenic mice at both time points. Our results indicate that ischemia-induced newborn neurons contribute to anatomical and functional outcome after experimental stroke in middle-aged mice.

66 citations