scispace - formally typeset
Author

Xinxin Dai

Bio: Xinxin Dai is an academic researcher from Henan Normal University. The author has contributed to research in topic(s): Lie group. The author has an hindex of 1, co-authored 1 publication(s) receiving 12 citation(s).
Topics: Lie group

Papers
More filters
Journal ArticleDOI

[...]

TL;DR: In this article, it was shown that if the metric g of M is a *-Ricci soliton, then either M is locally isometric to the product ℍn+1(−4)×ℝn or the potential vector field is strict infinitesimal contact transformation.
Abstract: Abstract Let (M, g) be a non-Kenmotsu (κ, μ)′-almost Kenmotsu manifold of dimension 2n + 1. In this paper, we prove that if the metric g of M is a *-Ricci soliton, then either M is locally isometric to the product ℍn+1(−4)×ℝn or the potential vector field is strict infinitesimal contact transformation. Moreover, two concrete examples of (κ, μ)′-almost Kenmotsu 3-manifolds admitting a Killing vector field and strict infinitesimal contact transformation are given.

12 citations


Cited by
More filters
Book

[...]

01 Jan 1970

294 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors prove a non-existence result for Ricci solitons on non-cosymplectic manifolds, and prove the same result for almost cosympelous manifolds.
Abstract: In this short note, we prove a non-existence result for $$*$$ -Ricci solitons on non-cosymplectic $$(\kappa ,\mu )$$ -almost cosymplectic manifolds.

3 citations

Journal ArticleDOI

[...]

TL;DR: In this article, it was shown that if a non-constant solution of the critical point equation of a connected non-compact manifold admits a nonconstant function, then the manifold is locally isometric to the Ricci flat manifold and the function is harmonic.
Abstract: In the present paper, we characterize $$(k,\mu )'$$-almost Kenmotsu manifolds admitting $$*$$-critical point equation. It is shown that if $$(g, \lambda )$$ is a non-constant solution of the $$*$$-critical point equation of a connected non-compact $$(k,\mu )'$$-almost Kenmotsu manifold, then (1) the manifold M is locally isometric to $$\mathbb {H}^{n+1}(-4)$$$$\times $$$$\mathbb {R}^n$$, (2) the manifold M is $$*$$-Ricci flat and (3) the function $$\lambda $$ is harmonic. Finally an illustrative example is presented.

3 citations

Journal ArticleDOI

[...]

15 Apr 2021
TL;DR: In this article, it was shown that Bach flat almost coKahler manifold admits Ricci solitons, satisfying the critical point equation (CPE) or Bach flat.
Abstract: In this paper, we study an almost coKahler manifold admitting certain metrics such as $$*$$ -Ricci solitons, satisfying the critical point equation (CPE) or Bach flat. First, we consider a coKahler 3-manifold (M, g) admitting a $$*$$ -Ricci soliton (g, X) and we show in this case that either M is locally flat or X is an infinitesimal contact transformation. Next, we study non-coKahler $$(\kappa ,\mu )$$ -almost coKahler metrics as CPE metrics and prove that such a g cannot be a solution of CPE with non-trivial function f. Finally, we prove that a $$(\kappa , \mu )$$ -almost coKahler manifold (M, g) is coKahler if either M admits a divergence free Cotton tensor or the metric g is Bach flat. In contrast to this, we show by a suitable example that there are Bach flat almost coKahler manifolds which are non-coKahler.

3 citations

Journal ArticleDOI

[...]

TL;DR: In this article, it was shown that if the metric g represents a Yamabe soliton, then it is locally isometric to the product space and the contact transformation is a strict infinitesimal contact transformation.
Abstract: Let $$(M^{2n+1},\phi ,\xi ,\eta ,g)$$ be a non-Kenmotsu almost Kenmotsu $$(k,\mu )'$$ -manifold. If the metric g represents a Yamabe soliton, then either $$M^{2n+1}$$ is locally isometric to the product space $$\mathbb {H}^{n+1}(-4)\times \mathbb {R}^n$$ or $$\eta $$ is a strict infinitesimal contact transformation. The later case can not occur if a Yamabe soliton is replaced by a gradient Yamabe soliton. Some corollaries of this theorem are given and an example illustrating this theorem is constructed.

2 citations