scispace - formally typeset
Search or ask a question
Institution

California State University, Fullerton

EducationFullerton, California, United States
About: California State University, Fullerton is a education organization based out in Fullerton, California, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 4807 authors who have published 9379 publications receiving 296853 citations. The organization is also known as: CSUF & CSU Fullerton.


Papers
More filters
Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +1008 moreInstitutions (96)
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$, and the final black hole mass is $62^{+4}_{-4} M_\odot$, with $3.0^{+0.5}_{-0.5} M_\odot c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

9,596 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1131 moreInstitutions (123)
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract: On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

7,327 citations

Journal ArticleDOI
28 Aug 2015-Science
TL;DR: A large-scale assessment suggests that experimental reproducibility in psychology leaves a lot to be desired, and correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.
Abstract: Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47% of original effect sizes were in the 95% confidence interval of the replication effect size; 39% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.

5,532 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of conditions that will result in a product with a desirable combination of properties, which is a problem facing the product development community in general.
Abstract: A problem facing the product development community is the selection of a set of conditions which will result in a product with a desirable combination of properties. This essentially is a problem i...

4,109 citations

Journal ArticleDOI
TL;DR: This paper surveys the landscape of actual and possible hybrid recommenders, and introduces a novel hybrid, EntreeC, a system that combines knowledge-based recommendation and collaborative filtering to recommend restaurants, and shows that semantic ratings obtained from the knowledge- based part of the system enhance the effectiveness of collaborative filtering.
Abstract: Recommender systems represent user preferences for the purpose of suggesting items to purchase or examine They have become fundamental applications in electronic commerce and information access, providing suggestions that effectively prune large information spaces so that users are directed toward those items that best meet their needs and preferences A variety of techniques have been proposed for performing recommendation, including content-based, collaborative, knowledge-based and other techniques To improve performance, these methods have sometimes been combined in hybrid recommenders This paper surveys the landscape of actual and possible hybrid recommenders, and introduces a novel hybrid, EntreeC, a system that combines knowledge-based recommendation and collaborative filtering to recommend restaurants Further, we show that semantic ratings obtained from the knowledge-based part of the system enhance the effectiveness of collaborative filtering

3,883 citations


Authors

Showing all 4886 results

NameH-indexPapersCitations
George Perry13992377721
J. R. Smith1341335107641
David Smith1292184100917
Lindsey Gray129117081317
Matt McGue12265354733
Javier Sánchez10865355257
Paul Tapponnier9929442855
Steve Weiner9631933982
Arthur C. Graesser9561438549
K. L. Dooley9532063579
T. D. Abbott9025560696
Michael Pressley8924526746
Lia Addadi8730131592
Kathleen Dracup7439421605
Bernhard H. F. Weber7340622232
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

92% related

University of Wisconsin–Milwaukee
28K papers, 936.4K citations

92% related

San Diego State University
27.9K papers, 1.1M citations

92% related

Florida International University
31.1K papers, 934.2K citations

91% related

Florida State University
65.3K papers, 2.5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
2022107
2021575
2020574
2019521
2018502