scispace - formally typeset
Search or ask a question
JournalISSN: 0167-4366

Agroforestry Systems 

Springer Science+Business Media
About: Agroforestry Systems is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Agriculture & Intercropping. It has an ISSN identifier of 0167-4366. Over the lifetime, 3272 publications have been published receiving 102860 citations.


Papers
More filters
Journal ArticleDOI
Shibu Jose1
TL;DR: In this paper, the authors examined four major ecosystem services and environmental benefits of agroforestry: (1) carbon sequestration, (2) biodiversity conservation, (3) soil enrichment and (4) air and water quality.
Abstract: Agroforestry systems are believed to provide a number of ecosystem services; however, until recently evidence in the agroforestry literature supporting these perceived benefits has been lacking. This special issue brings together a series of papers from around the globe to address recent findings on the ecosystem services and environmental benefits provided by agroforestry. As prelude to the special issue, this paper examines four major ecosystem services and environmental benefits of agroforestry: (1) carbon sequestration, (2) biodiversity conservation, (3) soil enrichment and (4) air and water quality. Past and present evidence clearly indicates that agroforestry, as part of a multifunctional working landscape, can be a viable land-use option that, in addition to alleviating poverty, offers a number of ecosystem services and environmental benefits. This realization should help promote agroforestry and its role as an integral part of a multifunctional working landscape the world over.

1,158 citations

Journal ArticleDOI
TL;DR: In this article, the potential of carbon sequestration through agroforestry in both subsistence and commercial enterprises in both the tropics and the temperate region has been investigated, and the potential for C sequestration rates range from 1.5 to 3.5 Mg C ha −1 yr −1.
Abstract: Agroforestry has importance as a carbon sequestration strategy because of carbon storage potential in its multiple plant species and soil as well as its applicability in agricultural lands and in reforestation. The potential seems to be substantial; but it has not been even adequately recognized, let alone exploited. Proper design and management of agroforestry practices can make them effective carbon sinks. As in other land-use systems, the extent of C sequestered will depend on the amounts of C in standing biomass, recalcitrant C remaining in the soil, and C sequestered in wood products. Average carbon storage by agroforestry practices has been estimated as 9, 21, 50, and 63 Mg Ch a −1 in semiarid, subhumid, humid, and temperate regions. For smallholder agroforestry systems in the tropics, potential C sequestration rates range from 1.5 to 3.5 Mg C ha −1 yr −1 . Agroforestry can also have an indirect effect on C sequestration when it helps decrease pressure on natural forests, which are the largest sink of terrestrial C. Another indirect avenue of C sequestration is through the use of agroforestry technologies for soil conservation, which could enhance C storage in trees and soils. Agroforestry systems with perennial crops may be important carbon sinks, while intensively managed agroforestry systems with annual crops are more similar to conventional agriculture. In order to exploit this vastly unrealized potential of C sequestration through agroforestry in both subsistence and commercial enterprises in the tropics and the temperate region, innovative policies, based on rigorous research results, have to be put in place.

727 citations

Book ChapterDOI
TL;DR: Shade trees reduce the stress of coffee (Coffea spp.) and cacao (Theobroma cacao) by ameliorating adverse climatic conditions and nutritional imbalances, but they may also compete for growth resources.
Abstract: Shade trees reduce the stress of coffee (Coffea spp.) and cacao (Theobroma cacao) by ameliorating adverse climatic conditions and nutritional imbalances, but they may also compete for growth resources. For example, shade trees buffer high and low temperature extremes by as much as 5 °C and can produce up to 14 Mg ha−1 yr−1 of litterfall and pruning residues, containing up to 340 kg N ha−1 yr−1. However, N2 fixation by leguminous shade trees grown at a density of 100 to 300 trees ha−1 may not exceed 60 kg N ha−1 yr−1. Shade tree selection and management are potentially important tools for integrated pest management because increased shade may increase the incidence of some commercially important pests and diseases (such as Phythphora palmivora and Mycena citricolor) and decrease the incidence of others (such as Colletotrichum gloeosporioides and Cercospora coffeicola). In Central America, merchantable timber production from commercially important shade tree species, such as Cordia alliodora, is in the range of 4−6 m3 ha−1 yr−1.

567 citations

Journal ArticleDOI
TL;DR: A review of the current state of knowledge on homegardens with a view to using it as a basis for improving the home gardening as well as similar agroforestry systems is presented in this paper.
Abstract: Tropical homegardens, one of the oldest forms of managed land-use systems, are considered to be an epitome of sustainability. Although these multispecies production systems have fascinated many and provided sustenance to millions, they have received relatively little scientific attention. The objective of this review is to summarize the current state of knowledge on homegardens with a view to using it as a basis for improving the homegardens as well as similar agroforestry systems. Description and inventory of local systems dominated the ‘research’ efforts on homegardens during the past 25 or more years. The main attributes that have been identified as contributing to the sustainability of these systems are biophysical advantages such as efficient nutrient cycling offered by multispecies composition, conservation of bio-cultural diversity, product diversification as well as nonmarket values of products and services, and social and cultural values including the opportunity for gender equality in managing the systems. With increasing emphasis on industrial models of agricultural development, fragmentation of land holdings due to demographic pressures, and, to some extent, the neglect – or, lack of appreciation – of traditional values, questions have been raised about the future of homegardens, but such concerns seem to be unfounded. Quite to the contrary, it is increasingly being recognized that understanding the scientific principles of these multispecies systems will have much to offer in the development of sustainable agroecosystems. Research on economic valuation of the tangible as well as intangible products and services, principles and mechanisms of resource sharing in mixed plant communities, and realistic valuation and appreciation of hitherto unrecognised benefits such as carbon sequestration will provide a sound basis for formulating appropriate policies for better realization and exploitation of the benefits of homegardens.

567 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202373
202298
2021157
2020204
2019185
201893