scispace - formally typeset
Search or ask a question
JournalISSN: 1540-658X

Assay and Drug Development Technologies 

Mary Ann Liebert, Inc.
About: Assay and Drug Development Technologies is an academic journal published by Mary Ann Liebert, Inc.. The journal publishes majorly in the area(s): Medicine & Drug discovery. It has an ISSN identifier of 1540-658X. Over the lifetime, 976 publications have been published receiving 23604 citations.
Topics: Medicine, Drug discovery, Receptor, Kinase, Chemistry


Papers
More filters
Journal ArticleDOI
TL;DR: The characteristics of 3D cell culture systems in comparison to the two-dimensional monolayer culture are discussed, focusing on cell growth conditions, cell proliferation, population, and gene and protein expression profiles.
Abstract: Three-dimensional (3D) cell culture systems have gained increasing interest in drug discovery and tissue engineering due to their evident advantages in providing more physiologically relevant information and more predictive data for in vivo tests. In this review, we discuss the characteristics of 3D cell culture systems in comparison to the two-dimensional (2D) monolayer culture, focusing on cell growth conditions, cell proliferation, population, and gene and protein expression profiles. The innovations and development in 3D culture systems for drug discovery over the past 5 years are also reviewed in the article, emphasizing the cellular response to different classes of anticancer drugs, focusing particularly on similarities and differences between 3D and 2D models across the field. The progression and advancement in the application of 3D cell cultures in cell-based biosensors is another focal point of this review.

1,784 citations

Journal ArticleDOI
TL;DR: This review focuses on the theoretical background of MST and gives a detailed overview on various applications to demonstrate the broad applicability.
Abstract: The use of infrared laser sources for creation of localized temperature fields has opened new possibilities for basic research and drug discovery. A recently developed technology, Microscale Thermophoresis (MST), uses this temperature field to perform biomolecular interaction studies. Thermophoresis, the motion of molecules in temperature fields, is very sensitive to changes in size, charge, and solvation shell of a molecule and thus suited for bioanalytics. This review focuses on the theoretical background of MST and gives a detailed overview on various applications to demonstrate the broad applicability. Experiments range from the quantification of the affinity of low-molecular-weight binders using fluorescently labeled proteins, to interactions between macromolecules and multi-component complexes like receptor containing liposomes. Information regarding experiment and experimental setup is based on the Monolith NT.115 instrument (NanoTemper Technologies GmbH).

683 citations

Journal ArticleDOI
Frank Fan1, Keith V. Wood
TL;DR: This review addresses recent progress made in the use of bioluminescent assays for HTS, highlighting new detection capabilities brought about by engineering luciferase genes, enzymes, and substrates.
Abstract: In the development of high throughput screening (HTS) as a central paradigm of drug discovery, fluorescence has generally been adopted as the favored methodology. Nevertheless, luminescence has maintained a prominent position among certain assay formats, most notably genetic reporters. Recently, there has been growing partiality for luminescent assays across a wider range of applications due to their sensitivity, broad linearity, and robustness to library compounds and complex biological samples. This trend has been fostered by the development of several new assay designs for diverse targets such as kinases, cytochrome p450s, proteases, apoptosis, and cytotoxicity. This review addresses recent progress made in the use of bioluminescent assays for HTS, highlighting new detection capabilities brought about by engineering luciferase genes, enzymes, and substrates. In genetic reporter applications, modifications to the luciferase genes have improved assay sensitivity by substantially increasing expr...

417 citations

Journal ArticleDOI
TL;DR: It is demonstrated that toxic response, teratogenic effects, and LC(50) in zebrafish are comparable to results in mice, and in vivo acridine orange staining can be used to visualize apoptotic events in embryos treated with brefeldin A, neomycin, or caspase inhibitors, providing a screening system for agents that modulate apoptosis.
Abstract: The zebrafish embryo has become an important vertebrate model for assessing drug effects. It is well suited for studies in genetics, embryology, development, and cell biology. Zebrafish embryos exhibit unique characteristics, including ease of maintenance and drug administration, short reproductive cycle, and transparency that permits visual assessment of developing cells and organs. Because of these advantages, zebrafish bioassays are cheaper and faster than mouse assays, and are suitable for large-scale drug screening. Here we describe the use of zebrafish bioassays for assessing toxicity, angiogenesis, and apoptosis. Using 18 chemicals, we demonstrated that toxic response, teratogenic effects, and LC(50) in zebrafish are comparable to results in mice. The effects of compounds on various organs, including the heart, brain, intestine, pancreas, cartilage, liver, and kidney, were observed in the transparent animals without complicated processing, demonstrating the efficiency of toxicity assays using zebrafish embryos. Using endogenous alkaline phosphatase staining and a whole-animal enzyme assay, we demonstrated that SU5416 and flavopiridol, compounds shown to have antiangiogenic effects in mammals, inhibit blood vessel growth in zebrafish, and this bioassay is suitable for high-throughput screening using a 96-well microplate reader. We also demonstrated that in vivo acridine orange staining can be used to visualize apoptotic events in embryos treated with brefeldin A, neomycin, or caspase inhibitors. After in vivo staining, acridine orange can be extracted and quantitated using a fluorescence microplate reader, providing a screening system for agents that modulate apoptosis.

398 citations

Journal ArticleDOI
Kelli Solly1, Xiaobo Wang, Xiao Xu, Berta Strulovici, Wei Zheng 
TL;DR: The conclusion is that the RT-CES system is a useful tool for label-free detection of certain cell-based parameters.
Abstract: Label-free detection emerges as a new approach in the development of technologies for cell-based screening assays. Unlike the classic detection methods that use fluorescence, radioisotope, luminescence, or light absorption, label-free detection directly measures the cell function without using a labeled molecule. The advantages of label-free detection include a simple homogeneous assay format, noninvasive measurement, less interference with normal cell function, kinetic measurement, and reduced time for assay development. Here, we have applied the electrical impedance detection method in a real-time cell electronic sensing (RT-CES trade mark ) system for cell-based assays. The cell growth rate measured by this RT-CES system was comparable to actual cell number counted manually. In addition, cell proliferation, cytotoxicity, cytoprotection, cell growth inhibition, and apoptosis data generated by this RT-CES system correlated with those determined by the classic methods. The conclusion is that the RT-CES system is a useful tool for label-free detection of certain cell-based parameters.

376 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202319
202241
202141
202036
201932
201835